Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 174  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


REVIEW ARTICLE
Year : 2011  |  Volume : 2  |  Issue : 1  |  Page : 34

A review of radio frequency identification technology for the anatomic pathology or biorepository laboratory: Much promise, some progress, and more work needed


1 Department of Pathology and Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
2 New Age Industries/AdvantaPure, Southampton, PA, USA
3 Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
4 Department of Pathology and Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA; Jonsson Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA; National Neurological AIDS Bank, Los Angeles, CA, USA

Correspondence Address:
William H Yong
Department of Pathology and Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA; Jonsson Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA; National Neurological AIDS Bank, Los Angeles, CA
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.83738

Rights and Permissions

Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and biorepository laboratories could avoid or mitigate the "islands of data" dilemma presented by barcode usage where there are innumerable standards and a consequent paucity of hardware or software "plug and play" interoperability. Work remains to be done to establish the durability and appropriate shielding of individual tag types for use in harsh laboratory environmental conditions, and for long-term archival storage. Finally, given the requirements for long-term storage of biospecimen assets, consideration should be given to ways of mitigating data isolation due to eventual technological obsolescence of a particular RFID technology or software.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed7900    
    Printed166    
    Emailed1    
    PDF Downloaded543    
    Comments [Add]    
    Cited by others 10    

Recommend this journal