Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 112  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


SYMPOSIUM - ORIGINAL RESEARCH
Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 10

Biomechanical model-based deformable registration of MRI and histopathology for clinical prostatectomy


1 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
2 Radiation Medicine Program, Princess Margaret Hospital, Toronto, Canada
3 Department of Pathology, Toronto General Hospital, Toronto, Canada
4 Department of Surgery, Division of Urology, Princess Margaret Hospital, Toronto, Canada
5 Radiation Medicine Program, Princess Margaret Hospital, Toronto; Department of Radiation Oncology, University of Toronto, Ontario, Canada
6 Institute of Biomaterials and Biomedical Engineering, University of Toronto; Radiation Medicine Program, Princess Margaret Hospital, Toronto; Department of Radiation Oncology, University of Toronto, Ontario, Canada

Correspondence Address:
Kristy K Brock
Institute of Biomaterials and Biomedical Engineering, University of Toronto; Radiation Medicine Program, Princess Margaret Hospital, Toronto; Department of Radiation Oncology, University of Toronto, Ontario
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.92035

Rights and Permissions

A biomechanical model-based deformable image registration incorporating specimen-specific changes in material properties is optimized and evaluated for correlating histology of clinical prostatectomy specimens with in vivo MRI. In this methodology, a three-step registration based on biomechanics calculates the transformations between histology and fixed, fixed and fresh, and fresh and in vivo states. A heterogeneous linear elastic material model is constructed based on magnetic resonance elastography (MRE) results. The ex vivo tissue MRE data provide specimen-specific information for the fresh and fixed tissue to account for the changes due to fixation. The accuracy of the algorithm was quantified by calculating the target registration error (TRE) by identifying naturally occurring anatomical points within the prostate in each image. TRE were improved with the deformable registration algorithm compared to rigid registration alone. The qualitative assessment also showed a good alignment between histology and MRI after the proposed deformable registration.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2559    
    Printed185    
    Emailed0    
    PDF Downloaded443    
    Comments [Add]    
    Cited by others 7    

Recommend this journal