Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 2001  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


SYMPOSIUM - ORIGINAL RESEARCH
Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 12

Learning histopathological patterns


1 Centre for Image Analysis, Uppsala University, Uppsala, Sweden
2 DTU Informatics, Lyngby, Denmark

Correspondence Address:
Andreas Kårsnäs
Centre for Image Analysis, Uppsala University, Uppsala
Sweden
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.92033

Rights and Permissions

Aims: The aim was to demonstrate a method for automated image analysis of immunohistochemically stained tissue samples for extracting features that correlate with patient disease. We address the problem of quantifying tumor tissue and segmenting and counting cell nuclei. Materials and Methods: Our method utilizes a flexible segmentation method based on sparse coding trained from representative image samples. Nuclei counting is based on a nucleus model that takes size, shape, and nucleus probability into account. Nuclei clustering and overlays are resolved using a gray-weighted distance transform. We obtain a probability measure for pixels belonging to a nucleus from our segmentation procedure. Experiments are carried out on two sets of immunohistochemically stained images - one set based on the estrogen receptor (ER) and the other on antigen KI-67. For the nuclei separation we have selected 207 ER image samples from 58 tissue micro array-cores corresponding to 58 patients and 136 KI-67 image samples also from 58 cores. The images are hand-annotated by marking the center position of each nucleus. For the ER data we have a total of 1006 nuclei and for the KI-67 we have 796 nuclei. Segmentation performance was evaluated in terms of missing nuclei, falsely detected nuclei, and multiple detections. The proposed method is compared to state-of-the-art Bayesian classification. Statistical analysis used: The performance of the proposed method and a state-of-the-art algorithm including variations thereof is compared using the Wilcoxon rank sum test. Results: For both the ER experiment and the KI-67 experiment the proposed method exhibits lower error rates than the state-of-the-art method. Total error rates were 4.8 % and 7.7 % in the two experiments, corresponding to an average of 0.23 and 0.45 errors per image, respectively. The Wilcoxon rank sum tests show statistically significant improvements over the state-of-the-art method. Conclusions: We have demonstrated a method and obtained good performance compared to state-of-the-art nuclei separation. The segmentation procedure is simple, highly flexible, and we demonstrate how it, in addition to the nuclei separation, can perform precise segmentation of cancerous tissue. The complexity of the segmentation procedure is linear in the image size and the nuclei separation is linear in the number of nuclei. Additionally the method can be parallelized to obtain high-speed computations.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2345    
    Printed33    
    Emailed1    
    PDF Downloaded561    
    Comments [Add]    
    Cited by others 5    

Recommend this journal