Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1840  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


SYMPOSIUM - ORIGINAL RESEARCH
Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 4

Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization


BioIngenium Research Group, Faculty of Engineering and School of Medicine, Universidad Nacional de Colombia, Carrera 30 45-03 Ed 471 1er Piso, Bogotá D.C., 11001000, Colombia

Correspondence Address:
Fabio A González
BioIngenium Research Group, Faculty of Engineering and School of Medicine, Universidad Nacional de Colombia, Carrera 30 45-03 Ed 471 1er Piso, Bogotá D.C., 11001000
Colombia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions

Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4194    
    Printed114    
    Emailed0    
    PDF Downloaded542    
    Comments [Add]    

Recommend this journal