Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 38  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


SYMPOSIUM - ORIGINAL RESEARCH
Year : 2013  |  Volume : 4  |  Issue : 2  |  Page : 2

TMARKER: A free software toolkit for histopathological cell counting and staining estimation


1 Institute for Computational Science; Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
2 California Institute of Technology, Pasadena, CA 91125, USA
3 NICTA, The University of Melbourne, Parkville VIC 3010, Australia
4 Institute of Pathology, University Hospital Zurich, Switzerland

Correspondence Address:
Peter J Wild
Institute of Pathology, University Hospital Zurich
Switzerland
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.109804

Rights and Permissions

Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. Methods: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. Results: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. Conclusion: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed7697    
    Printed26    
    Emailed1    
    PDF Downloaded1098    
    Comments [Add]    
    Cited by others 4    

Recommend this journal