Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1169  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 43

Investigation of scanning parameters for thyroid fine needle aspiration cytology specimens: A pilot study


1 Cytotechnology Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
2 Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
3 Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, USA
4 Department of Anatomic Pathology, Nebraska Medicine, Omaha, NE, USA
5 Cytotechnology Education, College of Allied Health Professions; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA

Correspondence Address:
Maheswari S Mukherjee
Cytotechnology Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.161610

Rights and Permissions

Background: Interest in developing more feasible and affordable applications of virtual microscopy in the field of cytology continues to grow. Aims: The aim of this study was to investigate the scanning parameters for the thyroid fine needle aspiration (FNA) cytology specimens. Subjects and Methods: A total of twelve glass slides from thyroid FNA cytology specimens were digitized at ×40 with 1 micron (μ) interval using seven focal plane (FP) levels (Group 1), five FP levels (Group 2), and three FP levels (Group 3) using iScan Coreo Au scanner (Ventana, AZ, USA) producing 36 virtual images (VI). With an average wash out period of 2 days, three participants diagnosed the preannotated cells of Groups 1, 2, and 3 using BioImagene's Image Viewer (version 3.1) (Ventana, Inc., Tucson, AZ, USA), and the corresponding 12 glass slides (Group 4) using conventional light microscopy. Results: All three raters correctly identified and showed complete agreement on the glass and VI for: 86% of the cases at FP Level 3, 83% of the cases at both the FP Levels 5 and 7. The intra-observer concordance between the glass slides and VI for all three raters was highest (97%) for Level 3 and glass, same (94%) for Level 5 and glass; and Level 7 and glass. The inter-rater reliability was found to be highest for the glass slides, and three FP levels (77%), followed by five FP levels (69.5%), and seven FP levels (69.1%). Conclusions: This pilot study found that among the three different FP levels, the VI digitized using three FP levels had slightly higher concordance, intra-observer concordance, and inter-rater reliability. Scanning additional levels above three FP levels did not improve concordance. We believe that there is no added benefit of acquiring five FP levels or more especially when considering the file size, and storage costs. Hence, this study reports that FP level three and 1 μ could be the potential scanning parameters for the thyroid FNA cytology specimens.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1429    
    Printed38    
    Emailed0    
    PDF Downloaded233    
    Comments [Add]    

Recommend this journal