Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1222  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


VIEWPOINT
Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 46

A conceptual model for translating omic data into clinical action


1 Department of Preventive Medicine, Division of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
2 Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
3 The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine, Mount Sinai, New York, USA
4 Division of Genetics and Endocrinology, Cook Children's Medical Center, Fort Worth, Texas, USA
5 Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA
6 Division of General Internal Medicine, Johns Hopkins University, Baltimore, Maryland, USA
7 Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA
8 Group Health Research Institute, Seattle, Washington, USA
9 Icahn School of Medicine, Mount Sinai, New York, USA
10 Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
11 Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
12 Nationwide Children's Hospital, Columbus, Ohio, USA
13 Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA
14 Vanderbilt University School of Medicine, Nashville, Tennessee, USA
15 Weis Center for Research, Danville, Pennsylvania, USA
16 Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA

Correspondence Address:
Timothy M Herr
Department of Preventive Medicine, Division of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.163985

Rights and Permissions

Genomic, proteomic, epigenomic, and other "omic" data have the potential to enable precision medicine, also commonly referred to as personalized medicine. The volume and complexity of omic data are rapidly overwhelming human cognitive capacity, requiring innovative approaches to translate such data into patient care. Here, we outline a conceptual model for the application of omic data in the clinical context, called "the omic funnel." This model parallels the classic "Data, Information, Knowledge, Wisdom pyramid" and adds context for how to move between each successive layer. Its goal is to allow informaticians, researchers, and clinicians to approach the problem of translating omic data from bench to bedside, by using discrete steps with clearly defined needs. Such an approach can facilitate the development of modular and interoperable software that can bring precision medicine into widespread practice.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2412    
    Printed34    
    Emailed0    
    PDF Downloaded435    
    Comments [Add]    
    Cited by others 4    

Recommend this journal