Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 332  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


RESEARCH ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 1  |  Page : 17

Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images


1 Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam; Department of Pathology, University of Illinois, Chicago, IL, India
2 Department of Electrical and Computer Engineering, University of Illinois, Chicago, IL, USA
3 Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
4 Department of Pathology, University of Illinois, Chicago, IL, USA

Correspondence Address:
Amit Sethi
Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam; Department of Pathology, University of Illinois, Chicago, IL
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.179984

Rights and Permissions

Context: Color normalization techniques for histology have not been empirically tested for their utility for computational pathology pipelines. Aims: We compared two contemporary techniques for achieving a common intermediate goal - epithelial-stromal classification. Settings and Design: Expert-annotated regions of epithelium and stroma were treated as ground truth for comparing classifiers on original and color-normalized images. Materials and Methods: Epithelial and stromal regions were annotated on thirty diverse-appearing H and E stained prostate cancer tissue microarray cores. Corresponding sets of thirty images each were generated using the two color normalization techniques. Color metrics were compared for original and color-normalized images. Separate epithelial-stromal classifiers were trained and compared on test images. Main analyses were conducted using a multiresolution segmentation (MRS) approach; comparative analyses using two other classification approaches (convolutional neural network [CNN], Wndchrm) were also performed. Statistical Analysis: For the main MRS method, which relied on classification of super-pixels, the number of variables used was reduced using backward elimination without compromising accuracy, and test - area under the curves (AUCs) were compared for original and normalized images. For CNN and Wndchrm, pixel classification test-AUCs were compared. Results: Khan method reduced color saturation while Vahadane reduced hue variance. Super-pixel-level test-AUC for MRS was 0.010-0.025 (95% confidence interval limits ± 0.004) higher for the two normalized image sets compared to the original in the 10-80 variable range. Improvement in pixel classification accuracy was also observed for CNN and Wndchrm for color-normalized images. Conclusions: Color normalization can give a small incremental benefit when a super-pixel-based classification method is used with features that perform implicit color normalization while the gain is higher for patch-based classification methods for classifying epithelium versus stroma.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed972    
    Printed10    
    Emailed0    
    PDF Downloaded241    
    Comments [Add]    

Recommend this journal