Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 664  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 1  |  Page : 30

Deep learning for classification of colorectal polyps on whole-slide images


1 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756; Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
2 Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
3 Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
4 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756; Department of Computer Science, Dartmouth College, Hanover, NH 03755; Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA

Correspondence Address:
Saeed Hassanpour
One Medical Center Drive, HB 7261, Lebanon, NH 03756
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_34_17

Rights and Permissions

Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%–95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed780    
    Printed12    
    Emailed0    
    PDF Downloaded351    
    Comments [Add]    

Recommend this journal