Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 62  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


RESEARCH ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 1  |  Page : 5

Pathological diagnosis of gastric cancers with a novel computerized analysis system


1 Department of Molecular Pathology, Tokyo Medical University, Tokyo; Department of Pathology, Wakayama Medical University, Wakayama, Japan
2 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
3 Medical Solution Division, NEC Corporation, Tokyo, Japan
4 Department of Machine Learning, NEC Laboratories America, Princeton, NJ, USA

Correspondence Address:
Masahiko Kuroda
Department of Molecular Pathology, Tokyo Medical University, Tokyo
Japan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.201114

Rights and Permissions

Background: Recent studies of molecular biology have provided great advances for diagnostic molecular pathology. Automated diagnostic systems with computerized scanning for sampled cells in fluids or smears are now widely utilized. Automated analysis of tissue sections is, however, very difficult because they exhibit a complex mixture of overlapping malignant tumor cells, benign host-derived cells, and extracellular materials. Thus, traditional histological diagnosis is still the most powerful method for diagnosis of diseases. Methods: We have developed a novel computer-assisted pathology system for rapid, automated histological analysis of hematoxylin and eosin (H and E)-stained sections. It is a multistage recognition system patterned after methods that human pathologists use for diagnosis but harnessing machine learning and image analysis. The system first analyzes an entire H and E-stained section (tissue) at low resolution to search suspicious areas for cancer and then the selected areas are analyzed at high resolution to confirm the initial suspicion. Results: After training the pathology system with gastric tissues samples, we examined its performance using other 1905 gastric tissues. The system's accuracy in detecting malignancies was shown to be almost equal to that of conventional diagnosis by expert pathologists. Conclusions: Our novel computerized analysis system provides a support for histological diagnosis, which is useful for screening and quality control. We consider that it could be extended to be applicable to many other carcinomas after learning normal and malignant forms of various tissues. Furthermore, we expect it to contribute to the development of more objective grading systems, immunohistochemical staining systems, and fluorescent-stained image analysis systems.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed133    
    Printed1    
    Emailed0    
    PDF Downloaded77    
    Comments [Add]    

Recommend this journal