Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 104  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


TECHNICAL NOTE
Year : 2018  |  Volume : 9  |  Issue : 1  |  Page : 20

Optimized JPEG 2000 compression for efficient storage of histopathological whole-Slide images


1 BioMediTech, Faculty of Medicine, Tampere University, Tampere, Finland
2 Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
3 Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland

Correspondence Address:
Dr. Jorma Isola
Faculty of Medicine, Tampere University, FI-33014 Tampere
Finland
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_69_17

Rights and Permissions

Background: Whole slide images (WSIs, digitized histopathology glass slides) are large data files whose long-term storage remains a significant cost for pathology departments. Currently used WSI formats are based on lossy image compression alogrithms, either using JPEG or its more efficient successor JPEG 2000. While the advantages of the JPEG 2000 algorithm (JP2) are commonly recognized, its compression parameters have not been fully optimized for pathology WSIs. Methods: We defined an optimized parametrization for JPEG 2000 image compression, designated JP2-WSI, to be used specifically with histopathological WSIs. Our parametrization is based on allowing a very high degree of compression on the background part of the WSI while using a conventional amount of compression on the tissue-containing part of the image, resulting in high overall compression ratios. Results: When comparing the compression power of JP2-WSI to the commonly used fixed 35:1 compression ratio JPEG 2000 and the default image formats of proprietary Aperio, Hamamatsu, and 3DHISTECH scanners, JP2-WSI produced the smallest file sizes and highest overall compression ratios for all 17 slides tested. The image quality, as judged by visual inspection and peak signal-to-noise ratio (PSNR) measurements, was equal to or better than the compared image formats. The average file size by JP2-WSI amounted to 15, 9, and 16 percent, respectively, of the file sizes of the three commercial scanner vendors' proprietary file formats (3DHISTECH MRXS, Aperio SVS, and Hamamatsu NDPI). In comparison to the commonly used 35:1 compressed JPEG 2000, JP2-WSI was three times more efficient. Conclusions: JP2-WSI allows very efficient and cost-effective data compression for whole slide images without loss of image information required for histopathological diagnosis.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed251    
    Printed16    
    Emailed0    
    PDF Downloaded113    
    Comments [Add]    

Recommend this journal