Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 55  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 1  |  Page : 5

Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels


1 Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, USA
2 Stoecker and Associates, Rolla MO, USA
3 DHHS, Lister Hill National Center for Biomedical Communications for National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
4 Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
5 Department of Surgical Pathology, University of Missouri Hospitals and Clinics, Columbia, USA

Correspondence Address:
Dr. Ronald Joe Stanley
127 Emerson Electric CO. Hall, 301 W. 16th St., Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0040
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_74_17

Rights and Permissions

Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed918    
    Printed6    
    Emailed0    
    PDF Downloaded340    
    Comments [Add]    

Recommend this journal