Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 358  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


RESEARCH ARTICLE
Year : 2019  |  Volume : 10  |  Issue : 1  |  Page : 24

Multi-field-of-view deep learning model predicts nonsmall cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images


1 Tempus Labs, Inc, Chicago, IL, USA
2 Tempus Labs, Inc; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
3 Tempus Labs, Inc; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Correspondence Address:
Dr. Stephen S F Yip
Tempus Labs, Inc., 600 West Chicago Ave. Ste 510, Chicago, IL 60608
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_24_19

Rights and Permissions

Background: Tumor programmed death-ligand 1 (PD-L1) status is useful in determining which patients may benefit from programmed death-1 (PD-1)/PD-L1 inhibitors. However, little is known about the association between PD-L1 status and tumor histopathological patterns. Using deep learning, we predicted PD-L1 status from hematoxylin and eosin (H and E) whole-slide images (WSIs) of nonsmall cell lung cancer (NSCLC) tumor samples. Materials and Methods: One hundred and thirty NSCLC patients were randomly assigned to training (n = 48) or test (n = 82) cohorts. A pair of H and E and PD-L1-immunostained WSIs was obtained for each patient. A pathologist annotated PD-L1 positive and negative tumor regions on the training samples using immunostained WSIs for reference. From the H and E WSIs, over 145,000 training tiles were generated and used to train a multi-field-of-view deep learning model with a residual neural network backbone. Results: The trained model accurately predicted tumor PD-L1 status on the held-out test cohort of H and E WSIs, which was balanced for PD-L1 status (area under the receiver operating characteristic curve [AUC] =0.80, P << 0.01). The model remained effective over a range of PD-L1 cutoff thresholds (AUC = 0.67–0.81, P ≤ 0.01) and when different proportions of the labels were randomly shuffled to simulate interpathologist disagreement (AUC = 0.63–0.77, P ≤ 0.03). Conclusions: A robust deep learning model was developed to predict tumor PD-L1 status from H and E WSIs in NSCLC. These results suggest that PD-L1 expression is correlated with the morphological features of the tumor microenvironment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1893    
    Printed55    
    Emailed0    
    PDF Downloaded435    
    Comments [Add]    

Recommend this journal