Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1197  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


RESEARCH ARTICLE
Year : 2019  |  Volume : 10  |  Issue : 1  |  Page : 30

Statistical analysis of survival models using feature quantification on prostate cancer histopathological images


1 Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA
2 Department of Pathology and Laboratory Medicine, Section of Urologic Oncology; Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
3 Department of Pathology and Laboratory Medicine, Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
4 Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

Correspondence Address:
Dr. Xin Qi
Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_85_18

Rights and Permissions

Background: Grading of prostatic adenocarcinoma is based on the Gleason scoring system and the more recently established prognostic grade groups. Typically, prostate cancer grading is performed by pathologists based on the morphology of the tumor on hematoxylin and eosin (H and E) slides. In this study, we investigated the histopathological image features with various survival models and attempted to study their correlations. Methods: Three texture methods (speeded-up robust features, histogram of oriented gradient, and local binary pattern) and two convolutional neural network (CNN)-based methods were applied to quantify histopathological image features. Five survival models were assessed on those image features in the context with other prostate clinical prognostic factors, including primary and secondary Gleason patterns, prostate-specific antigen levels, age, and clinical tumor stages. Results: Based on statistical comparisons among different image features with survival models, image features from CNN-based method with a recurrent neural network called CNN-long-short-term memory provided the highest hazard ratio of prostate cancer recurrence under Cox regression with an elastic net penalty. Conclusions: This approach outperformed the other image quantification methods listed above. Using this approach, patient outcomes were highly correlated with the histopathological image features of the tissue samples. In future studies, we plan to investigate the potential use of this approach for predicting recurrence in a wider range of cancer types.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed615    
    Printed22    
    Emailed0    
    PDF Downloaded158    
    Comments [Add]    

Recommend this journal