Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1472  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


    Article Cited by others

SYMPOSIUM - ORIGINAL ARTICLE

Mitosis detection in breast cancer histological images An ICPR 2012 contest

Roux Ludovic, Racoceanu Daniel, Loménie Nicolas, Kulikova Maria, Irshad Humayun, Klossa Jacques, Capron Frédérique, Genestie Catherine, Naour Gilles Le, Gurcan Metin N

Year : 2013| Volume: 4| Issue : 1 | Page no: 8-8

   This article has been cited by
 
1 Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports. 2018; 8(1)
[Pubmed]  [Google Scholar] [DOI]
2 Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal. 2018; 16: 34
[Pubmed]  [Google Scholar] [DOI]
3 DeepMitosis: Mitosis Detection via Deep Detection, Verication and Segmentation Networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis. 2018;
[Pubmed]  [Google Scholar] [DOI]
4 Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews. 2017; 37(2): 77
[Pubmed]  [Google Scholar] [DOI]
5 Digital image analysis in breast pathology –from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research. 2017;
[Pubmed]  [Google Scholar] [DOI]
6 SlideJ: An ImageJ plugin for automated processing of whole slide images
Vincenzo Della Mea,Giulia L. Baroni,David Pilutti,Carla Di Loreto,Helmut Ahammer
PLOS ONE. 2017; 12(7): e0180540
[Pubmed]  [Google Scholar] [DOI]
7 A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine. 2017; 5: 1
[Pubmed]  [Google Scholar] [DOI]
8 Efficient Deep Learning Model for Mitosis Detection using Breast Histopathology Images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics. 2017;
[Pubmed]  [Google Scholar] [DOI]
9 Deep learning in robotics: a review of recent research
Harry A. Pierson,Michael S. Gashler
Advanced Robotics. 2017; 31(16): 821
[Pubmed]  [Google Scholar] [DOI]
10 DCAN: Deep contour-aware networks for object instance segmentation from histology images
Hao Chen,Xiaojuan Qi,Lequan Yu,Qi Dou,Jing Qin,Pheng-Ann Heng
Medical Image Analysis. 2017; 36: 135
[Pubmed]  [Google Scholar] [DOI]
11 Gland segmentation in colon histology images: The glas challenge contest
Korsuk Sirinukunwattana,Josien P.W. Pluim,Hao Chen,Xiaojuan Qi,Pheng-Ann Heng,Yun Bo Guo,Li Yang Wang,Bogdan J. Matuszewski,Elia Bruni,Urko Sanchez,Anton Böhm,Olaf Ronneberger,Bassem Ben Cheikh,Daniel Racoceanu,Philipp Kainz,Michael Pfeiffer,Martin Urschler,David R.J. Snead,Nasir M. Rajpoot
Medical Image Analysis. 2017; 35: 489
[Pubmed]  [Google Scholar] [DOI]
12 A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
David Romo-Bucheli,Andrew Janowczyk,Hannah Gilmore,Eduardo Romero,Anant Madabhushi
Cytometry Part A. 2017;
[Pubmed]  [Google Scholar] [DOI]
13 Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology. 2016; 44(5): 663
[Pubmed]  [Google Scholar] [DOI]
14 Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
Maqlin Paramanandam,Michael O’Byrne,Bidisha Ghosh,Joy John Mammen,Marie Therese Manipadam,Robinson Thamburaj,Vikram Pakrashi,Pei-Yi Chu
PLOS ONE. 2016; 11(9): e0162053
[Pubmed]  [Google Scholar] [DOI]
15 Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image
Spoorthi Ravi Banavar,Prashanthi Chippagiri,Rohit Pandurangappa,Saileela Annavajjula,Premalatha Bidadi Rajashekaraiah
Analytical Cellular Pathology. 2016; 2016: 1
[Pubmed]  [Google Scholar] [DOI]
16 Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Fuyong Xing,Lin Yang
IEEE Reviews in Biomedical Engineering. 2016; 9: 234
[Pubmed]  [Google Scholar] [DOI]
17 Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Mitko Veta,Paul J. van Diest,Mehdi Jiwa,Shaimaa Al-Janabi,Josien P. W. Pluim,Anna Sapino
PLOS ONE. 2016; 11(8): e0161286
[Pubmed]  [Google Scholar] [DOI]
18 Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data
George Lee,David Edmundo Romo Bucheli,Anant Madabhushi,Daoqiang Zhang
PLOS ONE. 2016; 11(7): e0159088
[Pubmed]  [Google Scholar] [DOI]
19 Primer for Image Informatics in Personalized Medicine
Young Hwan Chang,Patrick Foley,Vahid Azimi,Rohan Borkar,Jonathan Lefman
Procedia Engineering. 2016; 159: 58
[Pubmed]  [Google Scholar] [DOI]
20 A survey on automated cancer diagnosis from histopathology images
J. Angel Arul Jothi,V. Mary Anita Rajam
Artificial Intelligence Review. 2016;
[Pubmed]  [Google Scholar] [DOI]
21 Imagining the future of bioimage analysis
Erik Meijering,Anne E Carpenter,Hanchuan Peng,Fred A Hamprecht,Jean-Christophe Olivo-Marin
Nature Biotechnology. 2016; 34(12): 1250
[Pubmed]  [Google Scholar] [DOI]
22 Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer
Sidra Nawaz,Andreas Heindl,Konrad Koelble,Yinyin Yuan
Modern Pathology. 2015; 28(6): 766
[Pubmed]  [Google Scholar] [DOI]
23 An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine. 2015; 64(2): 131
[Pubmed]  [Google Scholar] [DOI]
24 Automated Histology Analysis: Opportunities for signal processing
Michael T McCann,John A. Ozolek,Carlos A. Castro,Bahram Parvin,Jelena Kovacevic
IEEE Signal Processing Magazine. 2015; 32(1): 78
[Pubmed]  [Google Scholar] [DOI]
25 Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology
Andreas Heindl,Sidra Nawaz,Yinyin Yuan
Laboratory Investigation. 2015; 95(4): 377
[Pubmed]  [Google Scholar] [DOI]
26 Blind colour separation of H&E stained histological images by linearly transforming the colour space
R. CELIS,D. ROMO,E. ROMERO
Journal of Microscopy. 2015; 260(3): 377
[Pubmed]  [Google Scholar] [DOI]
27 Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response
Maki Ogura,Yoichiro Yamamoto,Hitoshi Miyashita,Hiroyuki Kumamoto,Manabu Fukumoto
Medical Molecular Morphology. 2015;
[Pubmed]  [Google Scholar] [DOI]
28 Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering. 2014; 7: 97
[Pubmed]  [Google Scholar] [DOI]
29 A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution
Adnan Mujahid Khan,Nasir Rajpoot,Darren Treanor,Derek Magee
IEEE Transactions on Biomedical Engineering. 2014; 61(6): 1729
[Pubmed]  [Google Scholar] [DOI]
30 Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering. 2014; 61(5): 1400
[Pubmed]  [Google Scholar] [DOI]
31 Multispectral Band Selection and Spatial Characterization: Application to Mitosis Detection in Breast Cancer Histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics. 2014;
[Pubmed]  [Google Scholar] [DOI]
32 Exploring the Function of Cell Shape and Size during Mitosis
Clotilde Cadart,Ewa Zlotek-Zlotkiewicz,Maël Le Berre,Matthieu Piel,Helen K. Matthews
Developmental Cell. 2014; 29(2): 159
[Pubmed]  [Google Scholar] [DOI]
33 Deep learning in neural networks: An overview
Jürgen Schmidhuber
Neural Networks. 2014;
[Pubmed]  [Google Scholar] [DOI]
34 Cell Words: Modelling the Visual Appearance of Cells inHistopathology Images
Adnan M. Khan,Korsuk Sirinukunwattana,Nasir M. Rajpoot
Computerized Medical Imaging and Graphics. 2014;
[Pubmed]  [Google Scholar] [DOI]
35 Assessment of algorithms for mitosis detection in breast cancer histopathology images
Mitko Veta,Paul J. van Diest,Stefan M. Willems,Haibo Wang,Anant Madabhushi,Angel Cruz-Roa,Fabio Gonzalez,Anders B.L. Larsen,Jacob S. Vestergaard,Anders B. Dahl,Dan C. Cire?an,Jürgen Schmidhuber,Alessandro Giusti,Luca M. Gambardella,F. Boray Tek,Thomas Walter,Ching-Wei Wang,Satoshi Kondo,Bogdan J. Matuszewski,Frederic Precioso,Violet Snell,Josef Kittler,Teofilo E. de Campos,Adnan M. Khan,Nasir M. Rajpoot,Evdokia Arkoumani,Miangela M. Lacle,Max A. Viergever,Josien P.W. Pluim
Medical Image Analysis. 2014;
[Pubmed]  [Google Scholar] [DOI]

 

Read this article