Contact us
|
Home
|
Login
| Users Online: 1634
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2019
December
[
5
]
November
[
4
]
September
[
4
]
August
[
3
]
July
[
6
]
June
[
1
]
May
[
2
]
April
[
6
]
March
[
3
]
February
[
4
]
January
[
2
]
2018
December
[
10
]
November
[
4
]
October
[
3
]
September
[
4
]
August
[
1
]
July
[
3
]
June
[
5
]
May
[
4
]
April
[
10
]
March
[
2
]
February
[
4
]
2017
December
[
5
]
November
[
4
]
October
[
3
]
September
[
9
]
July
[
5
]
June
[
2
]
May
[
4
]
April
[
6
]
March
[
6
]
February
[
7
]
2016
December
[
7
]
November
[
5
]
October
[
3
]
September
[
7
]
August
[
1
]
July
[
7
]
May
[
8
]
April
[
7
]
March
[
4
]
February
[
2
]
January
[
5
]
2015
November
[
4
]
October
[
5
]
September
[
5
]
August
[
4
]
July
[
3
]
June
[
19
]
May
[
5
]
April
[
1
]
March
[
5
]
February
[
9
]
January
[
3
]
2014
November
[
2
]
October
[
5
]
September
[
4
]
August
[
6
]
July
[
8
]
June
[
1
]
May
[
3
]
March
[
8
]
February
[
3
]
January
[
4
]
2013
December
[
5
]
November
[
2
]
October
[
4
]
September
[
4
]
August
[
3
]
July
[
3
]
June
[
5
]
May
[
7
]
March
[
18
]
February
[
1
]
January
[
1
]
2012
December
[
6
]
November
[
1
]
October
[
4
]
September
[
4
]
August
[
7
]
July
[
2
]
June
[
1
]
May
[
2
]
April
[
7
]
March
[
6
]
February
[
7
]
January
[
13
]
2011
December
[
3
]
November
[
1
]
October
[
7
]
August
[
9
]
July
[
3
]
June
[
7
]
May
[
3
]
March
[
6
]
February
[
8
]
January
[
6
]
2010
December
[
4
]
November
[
1
]
October
[
6
]
September
[
1
]
August
[
6
]
July
[
6
]
May
[
5
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Commentary
|
Editorial
|
Erratum
|
Original Article
|
Original Articles
|
Original Research
|
Research Article
|
Review Article
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Review Article:
Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association
Famke Aeffner, Mark D Zarella, Nathan Buchbinder, Marilyn M Bui, Matthew R Goodman, Douglas J Hartman, Giovanni M Lujan, Mariam A Molani, Anil V Parwani, Kate Lillard, Oliver C Turner, Venkata N P Vemuri, Ana G Yuil-Valdes, Douglas Bowman
J Pathol Inform
2019, 10:9 (8 March 2019)
DOI
:10.4103/jpi.jpi_82_18
PMID
:30984469
The advent of whole-slide imaging in digital pathology has brought about the advancement of computer-aided examination of tissue via digital image analysis. Digitized slides can now be easily annotated and analyzed via a variety of algorithms. This study reviews the fundamentals of tissue image analysis and aims to provide pathologists with basic information regarding the features, applications, and general workflow of these new tools. The review gives an overview of the basic categories of software solutions available, potential analysis strategies, technical considerations, and general algorithm readouts. Advantages and limitations of tissue image analysis are discussed, and emerging concepts, such as artificial intelligence and machine learning, are introduced. Finally, examples of how digital image analysis tools are currently being used in diagnostic laboratories, translational research, and drug development are discussed.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Ki67 quantitative interpretation: Insights using image analysis
Zoya Volynskaya, Ozgur Mete, Sara Pakbaz, Doaa Al-Ghamdi, Sylvia L Asa
J Pathol Inform
2019, 10:8 (8 March 2019)
DOI
:10.4103/jpi.jpi_76_18
PMID
:30984468
Background:
Proliferation markers, especially Ki67, are increasingly important in diagnosis and prognosis. The best method for calculating Ki67 is still the subject of debate.
Materials and Methods:
We evaluated an image analysis tool for quantitative interpretation of Ki67 in neuroendocrine tumors and compared it to manual counts. We expanded a primary digital pathology platform to include the Leica Biosystems image analysis nuclear algorithm. Slides were digitized using a Leica Aperio AT2 Scanner and accessed through the Cerner CoPath LIS interfaced with Aperio eSlideManager through Aperio ImageScope. Selected regions of interest (ROIs) were manually defined and annotated to include tumor cells only; they were then analyzed with the algorithm and by four pathologists counting on printed images. After validation, the algorithm was used to examine the impact of the size and number of areas selected as ROIs.
Results:
The algorithm provided reproducible results that were obtained within seconds, compared to up to 55 min of manual counting that varied between users. Benefits of image analysis identified by users included accuracy, time savings, and ease of viewing. Access to the algorithm allowed rapid comparisons of Ki67 counts in ROIs that varied in numbers of cells and selection of fields, the outputs demonstrated that the results vary around defined cutoffs that provide tumor grade depending on the number of cells and ROIs counted.
Conclusions:
Digital image analysis provides accurate and reproducible quantitative data faster than manual counts. However, access to this tool allows multiple analyses of a single sample to use variable numbers of cells and selection of variable ROIs that can alter the result in clinically significant ways. This study highlights the potential risk of hard cutoffs of continuous variables and indicates that standardization of number of cells and number of regions selected for analysis should be incorporated into guidelines for Ki67 calculations.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Research:
Automated detection of celiac disease on duodenal biopsy slides: A deep learning approach
Jason W Wei, Jerry W Wei, Christopher R Jackson, Bing Ren, Arief A Suriawinata, Saeed Hassanpour
J Pathol Inform
2019, 10:7 (8 March 2019)
DOI
:10.4103/jpi.jpi_87_18
PMID
:30984467
Context:
Celiac disease (CD) prevalence and diagnosis have increased substantially in recent years. The current gold standard for CD confirmation is visual examination of duodenal mucosal biopsies. An accurate computer-aided biopsy analysis system using deep learning can help pathologists diagnose CD more efficiently.
Subjects and Methods:
In this study, we trained a deep learning model to detect CD on duodenal biopsy images. Our model uses a state-of-the-art residual convolutional neural network to evaluate patches of duodenal tissue and then aggregates those predictions for whole-slide classification. We tested the model on an independent set of 212 images and evaluated its classification results against reference standards established by pathologists.
Results:
Our model identified CD, normal tissue, and nonspecific duodenitis with accuracies of 95.3%, 91.0%, and 89.2%, respectively. The area under the receiver operating characteristic curve was >0.95 for all classes.
Conclusions:
We have developed an automated biopsy analysis system that achieves high performance in detecting CD on biopsy slides. Our system can highlight areas of interest and provide preliminary classification of duodenal biopsies before review by pathologists. This technology has great potential for improving the accuracy and efficiency of CD diagnosis.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
|
Feedback
|
Disclaimer
|
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010