Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1189  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image
Spoorthi Ravi Banavar,Prashanthi Chippagiri,Rohit Pandurangappa,Saileela Annavajjula,Premalatha Bidadi Rajashekaraiah
Analytical Cellular Pathology.2016;2016()1
[DOI]
2Reinforced quasi-random forest
Angshuman Paul,Dipti Prasad Mukherjee
Pattern Recognition.2019;94()13
[DOI]
3SlideJ: An ImageJ plugin for automated processing of whole slide images
Vincenzo Della Mea,Giulia L. Baroni,David Pilutti,Carla Di Loreto,Helmut Ahammer
PLOS ONE.2017;12(7)e0180540
[DOI]
4Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides
Matthew Balazsi,Paula Blanco,Pablo Zoroquiain,Martin D. Levine,Miguel N. Burnier
Journal of Medical Imaging.2016;3(2)027501
[DOI]
5Primer for Image Informatics in Personalized Medicine
Young Hwan Chang,Patrick Foley,Vahid Azimi,Rohan Borkar,Jonathan Lefman
Procedia Engineering.2016;159(2)58
[DOI]
6Primer for Image Informatics in Personalized Medicine
Syed Fawad Hussain Naqvi,Salahuddin Ayubi,Ammara Nasim,Zeeshan Zafar
Procedia Engineering.2020;70(2)75
[DOI]
7Breast cancer image classification using pattern-based Hyper Conceptual Sampling method
Tooba Salahuddin,Fatima Haouari,Fahad Islam,Rahma Ali,Sara Al-Rasbi,Nada Aboueata,Eman Rezk,Ali Jaoua
Informatics in Medicine Unlocked.2018;13(2)176
[DOI]
8Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology
Andreas Heindl,Sidra Nawaz,Yinyin Yuan
Laboratory Investigation.2015;95(4)377
[DOI]
9Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
Maqlin Paramanandam,Michael O’Byrne,Bidisha Ghosh,Joy John Mammen,Marie Therese Manipadam,Robinson Thamburaj,Vikram Pakrashi,Pei-Yi Chu
PLOS ONE.2016;11(9)e0162053
[DOI]
10DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(9)121
[DOI]
11Artificial Intelligence for the Otolaryngologist: A State of the Art Review
Andrés M. Bur,Matthew Shew,Jacob New
Otolaryngology–Head and Neck Surgery.2019;160(4)603
[DOI]
12Assessment of algorithms for mitosis detection in breast cancer histopathology images
Mitko Veta,Paul J. van Diest,Stefan M. Willems,Haibo Wang,Anant Madabhushi,Angel Cruz-Roa,Fabio Gonzalez,Anders B.L. Larsen,Jacob S. Vestergaard,Anders B. Dahl,Dan C. Ciresan,Jürgen Schmidhuber,Alessandro Giusti,Luca M. Gambardella,F. Boray Tek,Thomas Walter,Ching-Wei Wang,Satoshi Kondo,Bogdan J. Matuszewski,Frederic Precioso,Violet Snell,Josef Kittler,Teofilo E. de Campos,Adnan M. Khan,Nasir M. Rajpoot,Evdokia Arkoumani,Miangela M. Lacle,Max A. Viergever,Josien P.W. Pluim
Medical Image Analysis.2015;20(1)237
[DOI]
13Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(1)19
[DOI]
14Exploring the Function of Cell Shape and Size during Mitosis
Clotilde Cadart,Ewa Zlotek-Zlotkiewicz,Maël Le Berre,Matthieu Piel,Helen K. Matthews
Developmental Cell.2014;29(2)159
[DOI]
15Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data
George Lee,David Edmundo Romo Bucheli,Anant Madabhushi,Daoqiang Zhang
PLOS ONE.2016;11(7)e0159088
[DOI]
16A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(7)1
[DOI]
17Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Yoshimasa Kawazoe,Kiminori Shimamoto,Ryohei Yamaguchi,Yukako Shintani-Domoto,Hiroshi Uozaki,Masashi Fukayama,Kazuhiko Ohe
Journal of Imaging.2018;4(7)91
[DOI]
18Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Zhaoyang Xu,Carlos Fernádez Moro,Danyil Kuznyecov,Béla Bozóky,Le Dong,Qianni Zhang
Journal of Imaging.2018;4(7)86
[DOI]
19Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(7)165
[DOI]
20Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
21Imagining the future of bioimage analysis
Erik Meijering,Anne E Carpenter,Hanchuan Peng,Fred A Hamprecht,Jean-Christophe Olivo-Marin
Nature Biotechnology.2016;34(12)1250
[DOI]
22A survey on automated cancer diagnosis from histopathology images
J. Angel Arul Jothi,V. Mary Anita Rajam
Artificial Intelligence Review.2017;48(1)31
[DOI]
23Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
Mitko Veta,Yujing J. Heng,Nikolas Stathonikos,Babak Ehteshami Bejnordi,Francisco Beca,Thomas Wollmann,Karl Rohr,Manan A. Shah,Dayong Wang,Mikael Rousson,Martin Hedlund,David Tellez,Francesco Ciompi,Erwan Zerhouni,David Lanyi,Matheus Viana,Vassili Kovalev,Vitali Liauchuk,Hady Ahmady Phoulady,Talha Qaiser,Simon Graham,Nasir Rajpoot,Erik Sjöblom,Jesper Molin,Kyunghyun Paeng,Sangheum Hwang,Sunggyun Park,Zhipeng Jia,Eric I-Chao Chang,Yan Xu,Andrew H. Beck,Paul J. van Diest,Josien P.W. Pluim
Medical Image Analysis.2019;54(1)111
[DOI]
24Cell words: Modelling the visual appearance of cells in histopathology images
Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computerized Medical Imaging and Graphics.2015;42(1)16
[DOI]
25Cell words: Modelling the visual appearance of cells in histopathology images
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Computerized Medical Imaging and Graphics.2014;42(1)1360
[DOI]
26Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Gabriel Jiménez,Daniel Racoceanu
Frontiers in Bioengineering and Biotechnology.2019;7(1)1360
[DOI]
27Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Mateo Puerto,Tania Vargas,Angel Cruz-Roa
Frontiers in Bioengineering and Biotechnology.2016;7(1)1
[DOI]
28Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Santiago López-Tapia,José Aneiros-Fernández,Nicolás Pérez de la Blanca
Frontiers in Bioengineering and Biotechnology.2019;11435(1)135
[DOI]
29Histo-genomics: digital pathology at the forefront of precision medicine
Ivraym Barsoum,Eriny Tawedrous,Hala Faragalla,George M. Yousef
Diagnosis.2019;6(3)203
[DOI]
30Histo-genomics: digital pathology at the forefront of precision medicine
Mohammad F. A. Fauzi,Mohammad F. Jamaluddin,Jenny T. H. Lee,Kean H. Teoh,Lai M. Looi
Diagnosis.2018;6(3)61
[DOI]
31Histo-genomics: digital pathology at the forefront of precision medicine
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
Diagnosis.2014;6(3)1279
[DOI]
32Histo-genomics: digital pathology at the forefront of precision medicine
Ruqayya Awan,Nada Aloraidi,Uvais Qidwai,Nasir Rajpoot
Diagnosis.2016;6(3)70
[DOI]
33Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Fuyong Xing,Lin Yang
IEEE Reviews in Biomedical Engineering.2016;9(3)234
[DOI]
34Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Veena Dodballapur,Yang Song,Heng Huang,Mei Chen,Wojciech Chrzanowski,Weidong Cai
IEEE Reviews in Biomedical Engineering.2019;9(3)1855
[DOI]
35Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal.2018;16(3)34
[DOI]
36Automated Histology Analysis: Opportunities for signal processing
Michael T McCann,John A. Ozolek,Carlos A. Castro,Bahram Parvin,Jelena Kovacevic
IEEE Signal Processing Magazine.2015;32(1)78
[DOI]
37Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response
Maki Ogura,Yoichiro Yamamoto,Hitoshi Miyashita,Hiroyuki Kumamoto,Manabu Fukumoto
Medical Molecular Morphology.2016;49(2)76
[DOI]
38Deep learning in robotics: a review of recent research
Harry A. Pierson,Michael S. Gashler
Advanced Robotics.2017;31(16)821
[DOI]
39Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
40Breast Cancer Histopathology Image Analysis: A Review
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
IEEE Transactions on Biomedical Engineering.2017;61(5)281
[DOI]
41Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
42Introduction of Artificial Intelligence in Pathology
Saad Ullah Akram,Talha Qaiser,Simon Graham,Juho Kannala,Janne Heikkilä,Nasir Rajpoot
Hanyang Medical Reviews.2018;11039(2)69
[DOI]
43Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
44Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Afiqah Abu Samah,Mohammad Faizal Ahmad Fauzi,Sarina Mansor
Toxicologic Pathology.2017;44(5)102
[DOI]
45Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Balamurali Murugesan,Sakthivel Selvaraj,Kaushik Sarveswaran,Keerthi Ram,Jayaraj Joseph,Mohanasankar Sivaprakasam,John E. Tomaszewski,Aaron D. Ward
Toxicologic Pathology.2019;44(5)27
[DOI]
46A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution
Adnan Mujahid Khan,Nasir Rajpoot,Darren Treanor,Derek Magee
IEEE Transactions on Biomedical Engineering.2014;61(6)1729
[DOI]
47Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(6)29
[DOI]
48Efficient deep learning model for mitosis detection using breast histopathology images
Oscar A. Jimenez-del-Toro,Mikael Rousson,Martin Hedlund,Mats Andersson,Ludwig Jacobsson,Gunnar Läthén,Björn Norell,Henning Müller,Manfredo Atzori,Metin N. Gurcan,John E. Tomaszewski
Computerized Medical Imaging and Graphics.2018;64(6)33
[DOI]
49Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy
Topaz Gilad,Jose Reyes,Jia-Yun Chen,Galit Lahav,Tammy Riklin Raviv,Robert Murphy
Bioinformatics.2018;64(6)33
[DOI]
50DCAN: Deep contour-aware networks for object instance segmentation from histology images
Hao Chen,Xiaojuan Qi,Lequan Yu,Qi Dou,Jing Qin,Pheng-Ann Heng
Medical Image Analysis.2017;36(6)135
[DOI]
51Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)135
[DOI]
52Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(1)29
[DOI]
53Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
54Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
Huangjing Lin,Hao Chen,Qi Dou,Liansheng Wang,Jing Qin,Pheng-Ann Heng
Computerized Medical Imaging and Graphics.2018;38(5)539
[DOI]
55Gland segmentation in colon histology images: The glas challenge contest
Korsuk Sirinukunwattana,Josien P.W. Pluim,Hao Chen,Xiaojuan Qi,Pheng-Ann Heng,Yun Bo Guo,Li Yang Wang,Bogdan J. Matuszewski,Elia Bruni,Urko Sanchez,Anton Böhm,Olaf Ronneberger,Bassem Ben Cheikh,Daniel Racoceanu,Philipp Kainz,Michael Pfeiffer,Martin Urschler,David R.J. Snead,Nasir M. Rajpoot
Medical Image Analysis.2017;35(5)489
[DOI]
56An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;35(5)1
[DOI]
57Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
58Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Mitko Veta,Paul J. van Diest,Mehdi Jiwa,Shaimaa Al-Janabi,Josien P. W. Pluim,Anna Sapino
PLOS ONE.2016;11(8)e0161286
[DOI]
59Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Mustafa Ustuner,Gokhan Bilgin
PLOS ONE.2015;11(8)540
[DOI]
60Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Zanariah Zainudin,Siti Mariyam Shamsuddin,Shafaatunnur Hasan
PLOS ONE.2020;921(8)43
[DOI]
61Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Maschenka Balkenhol,Nico Karssemeijer,Geert J. S. Litjens,Jeroen van der Laak,Francesco Ciompi,David Tellez,Metin N. Gurcan,John E. Tomaszewski
PLOS ONE.2018;921(8)34
[DOI]
62Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
PLOS ONE.2014;9041(8)90410B
[DOI]
63Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Huseyin Cukur,Gokhan Bilgin
PLOS ONE.2017;9041(8)1
[DOI]
64Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
PLOS ONE.2013;8150(8)411
[DOI]
65Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Boqian Wu,Tasleem Kausar,Qiao Xiao,Mingjiang Wang,Wenfeng Wang,Binwen Fan,Dandan Sun
PLOS ONE.2017;723(8)249
[DOI]
66Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Nikola G. Shakev,Sevil A. Ahmed,Vasil L. Popov,Andon V. Topalov
PLOS ONE.2018;723(8)589
[DOI]
67Machine learning approaches for pathologic diagnosis
Daisuke Komura,Shumpei Ishikawa
Virchows Archiv.2019;475(2)131
[DOI]
68Deep learning in neural networks: An overview
Jürgen Schmidhuber
Neural Networks.2015;61(2)85
[DOI]
69Deep learning in neural networks: An overview
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Neural Networks.2017;61(2)133
[DOI]
70A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
David Romo-Bucheli,Andrew Janowczyk,Hannah Gilmore,Eduardo Romero,Anant Madabhushi
Cytometry Part A.2017;91(6)566
[DOI]
71An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
72An unsupervised feature learning framework for basal cell carcinoma image analysis
S. Kaushik,S. Vijaya Raghavan,B. Sivaselvan
Artificial Intelligence in Medicine.2019;1045(2)254
[DOI]
73Blind colour separation of H&E stained histological images by linearly transforming the colour space
R. CELIS,D. ROMO,E. ROMERO
Journal of Microscopy.2015;260(3)377
[DOI]
74Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection
Huangjing Lin,Hao Chen,Simon Graham,Qi Dou,Nasir Rajpoot,Pheng-Ann Heng
IEEE Transactions on Medical Imaging.2019;38(8)1948
[DOI]
75Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review
Jia-Mei Chen,Yan Li,Jun Xu,Lei Gong,Lin-Wei Wang,Wen-Lou Liu,Juan Liu
Tumor Biology.2017;39(3)101042831769455
[DOI]
76Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review
Shahab Ensafi,Shijian Lu,Ashraf A. Kassim,Chew Lim Tan
Tumor Biology.2014;39(3)3321
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs