Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 627  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image
Spoorthi Ravi Banavar,Prashanthi Chippagiri,Rohit Pandurangappa,Saileela Annavajjula,Premalatha Bidadi Rajashekaraiah
Analytical Cellular Pathology.2016;2016()1
[DOI]
2Translational AI and Deep Learning in Diagnostic Pathology
Ahmed Serag,Adrian Ion-Margineanu,Hammad Qureshi,Ryan McMillan,Marie-Judith Saint Martin,Jim Diamond,Paul O'Reilly,Peter Hamilton
Frontiers in Medicine.2019;6()1
[DOI]
3Reinforced quasi-random forest
Angshuman Paul,Dipti Prasad Mukherjee
Pattern Recognition.2019;94()13
[DOI]
4SlideJ: An ImageJ plugin for automated processing of whole slide images
Vincenzo Della Mea,Giulia L. Baroni,David Pilutti,Carla Di Loreto,Helmut Ahammer
PLOS ONE.2017;12(7)e0180540
[DOI]
5Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides
Matthew Balazsi,Paula Blanco,Pablo Zoroquiain,Martin D. Levine,Miguel N. Burnier
Journal of Medical Imaging.2016;3(2)027501
[DOI]
6Primer for Image Informatics in Personalized Medicine
Young Hwan Chang,Patrick Foley,Vahid Azimi,Rohan Borkar,Jonathan Lefman
Procedia Engineering.2016;159(2)58
[DOI]
7Primer for Image Informatics in Personalized Medicine
Syed Fawad Hussain Naqvi,Salahuddin Ayubi,Ammara Nasim,Zeeshan Zafar
Procedia Engineering.2020;70(2)75
[DOI]
8Breast cancer image classification using pattern-based Hyper Conceptual Sampling method
Tooba Salahuddin,Fatima Haouari,Fahad Islam,Rahma Ali,Sara Al-Rasbi,Nada Aboueata,Eman Rezk,Ali Jaoua
Informatics in Medicine Unlocked.2018;13(2)176
[DOI]
9Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology
Andreas Heindl,Sidra Nawaz,Yinyin Yuan
Laboratory Investigation.2015;95(4)377
[DOI]
10Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
Maqlin Paramanandam,Michael O’Byrne,Bidisha Ghosh,Joy John Mammen,Marie Therese Manipadam,Robinson Thamburaj,Vikram Pakrashi,Pei-Yi Chu
PLOS ONE.2016;11(9)e0162053
[DOI]
11DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(9)121
[DOI]
12Artificial Intelligence for the Otolaryngologist: A State of the Art Review
Andrés M. Bur,Matthew Shew,Jacob New
Otolaryngology–Head and Neck Surgery.2019;160(4)603
[DOI]
13Assessment of algorithms for mitosis detection in breast cancer histopathology images
Mitko Veta,Paul J. van Diest,Stefan M. Willems,Haibo Wang,Anant Madabhushi,Angel Cruz-Roa,Fabio Gonzalez,Anders B.L. Larsen,Jacob S. Vestergaard,Anders B. Dahl,Dan C. Ciresan,Jürgen Schmidhuber,Alessandro Giusti,Luca M. Gambardella,F. Boray Tek,Thomas Walter,Ching-Wei Wang,Satoshi Kondo,Bogdan J. Matuszewski,Frederic Precioso,Violet Snell,Josef Kittler,Teofilo E. de Campos,Adnan M. Khan,Nasir M. Rajpoot,Evdokia Arkoumani,Miangela M. Lacle,Max A. Viergever,Josien P.W. Pluim
Medical Image Analysis.2015;20(1)237
[DOI]
14Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(1)19
[DOI]
15Exploring the Function of Cell Shape and Size during Mitosis
Clotilde Cadart,Ewa Zlotek-Zlotkiewicz,Maël Le Berre,Matthieu Piel,Helen K. Matthews
Developmental Cell.2014;29(2)159
[DOI]
16Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data
George Lee,David Edmundo Romo Bucheli,Anant Madabhushi,Daoqiang Zhang
PLOS ONE.2016;11(7)e0159088
[DOI]
17A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(7)1
[DOI]
18Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Yoshimasa Kawazoe,Kiminori Shimamoto,Ryohei Yamaguchi,Yukako Shintani-Domoto,Hiroshi Uozaki,Masashi Fukayama,Kazuhiko Ohe
Journal of Imaging.2018;4(7)91
[DOI]
19Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Zhaoyang Xu,Carlos Fernádez Moro,Danyil Kuznyecov,Béla Bozóky,Le Dong,Qianni Zhang
Journal of Imaging.2018;4(7)86
[DOI]
20Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(7)165
[DOI]
21Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
22Imagining the future of bioimage analysis
Erik Meijering,Anne E Carpenter,Hanchuan Peng,Fred A Hamprecht,Jean-Christophe Olivo-Marin
Nature Biotechnology.2016;34(12)1250
[DOI]
23Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
Esther Abels,Liron Pantanowitz,Famke Aeffner,Mark D Zarella,Jeroen Laak,Marilyn M Bui,Venkata NP Vemuri,Anil V Parwani,Jeff Gibbs,Emmanuel Agosto-Arroyo,Andrew H Beck,Cleopatra Kozlowski
The Journal of Pathology.2019;249(3)286
[DOI]
24A survey on automated cancer diagnosis from histopathology images
J. Angel Arul Jothi,V. Mary Anita Rajam
Artificial Intelligence Review.2017;48(1)31
[DOI]
25Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
Mitko Veta,Yujing J. Heng,Nikolas Stathonikos,Babak Ehteshami Bejnordi,Francisco Beca,Thomas Wollmann,Karl Rohr,Manan A. Shah,Dayong Wang,Mikael Rousson,Martin Hedlund,David Tellez,Francesco Ciompi,Erwan Zerhouni,David Lanyi,Matheus Viana,Vassili Kovalev,Vitali Liauchuk,Hady Ahmady Phoulady,Talha Qaiser,Simon Graham,Nasir Rajpoot,Erik Sjöblom,Jesper Molin,Kyunghyun Paeng,Sangheum Hwang,Sunggyun Park,Zhipeng Jia,Eric I-Chao Chang,Yan Xu,Andrew H. Beck,Paul J. van Diest,Josien P.W. Pluim
Medical Image Analysis.2019;54(1)111
[DOI]
26Cell words: Modelling the visual appearance of cells in histopathology images
Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computerized Medical Imaging and Graphics.2015;42(1)16
[DOI]
27Cell words: Modelling the visual appearance of cells in histopathology images
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Computerized Medical Imaging and Graphics.2014;42(1)1360
[DOI]
28A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor
Christof A. Bertram,Marc Aubreville,Christian Marzahl,Andreas Maier,Robert Klopfleisch
Scientific Data.2019;6(1)1360
[DOI]
29Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Gabriel Jiménez,Daniel Racoceanu
Frontiers in Bioengineering and Biotechnology.2019;7(1)1360
[DOI]
30Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Yao Xue,Gilbert Bigras,Judith Hugh,Nilanjan Ray
IEEE Transactions on Medical Imaging.2019;38(11)2632
[DOI]
31Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Mateo Puerto,Tania Vargas,Angel Cruz-Roa
IEEE Transactions on Medical Imaging.2016;38(11)1
[DOI]
32Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Santiago López-Tapia,José Aneiros-Fernández,Nicolás Pérez de la Blanca
IEEE Transactions on Medical Imaging.2019;11435(11)135
[DOI]
33Histo-genomics: digital pathology at the forefront of precision medicine
Ivraym Barsoum,Eriny Tawedrous,Hala Faragalla,George M. Yousef
Diagnosis.2019;6(3)203
[DOI]
34Histo-genomics: digital pathology at the forefront of precision medicine
Mohammad F. A. Fauzi,Mohammad F. Jamaluddin,Jenny T. H. Lee,Kean H. Teoh,Lai M. Looi
Diagnosis.2018;6(3)61
[DOI]
35Histo-genomics: digital pathology at the forefront of precision medicine
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
Diagnosis.2014;6(3)1279
[DOI]
36Histo-genomics: digital pathology at the forefront of precision medicine
Ruqayya Awan,Nada Aloraidi,Uvais Qidwai,Nasir Rajpoot
Diagnosis.2016;6(3)70
[DOI]
37Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Fuyong Xing,Lin Yang
IEEE Reviews in Biomedical Engineering.2016;9(3)234
[DOI]
38Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Veena Dodballapur,Yang Song,Heng Huang,Mei Chen,Wojciech Chrzanowski,Weidong Cai
IEEE Reviews in Biomedical Engineering.2019;9(3)1855
[DOI]
39Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal.2018;16(3)34
[DOI]
40Automated Histology Analysis: Opportunities for signal processing
Michael T McCann,John A. Ozolek,Carlos A. Castro,Bahram Parvin,Jelena Kovacevic
IEEE Signal Processing Magazine.2015;32(1)78
[DOI]
41Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response
Maki Ogura,Yoichiro Yamamoto,Hitoshi Miyashita,Hiroyuki Kumamoto,Manabu Fukumoto
Medical Molecular Morphology.2016;49(2)76
[DOI]
42Deep learning in robotics: a review of recent research
Harry A. Pierson,Michael S. Gashler
Advanced Robotics.2017;31(16)821
[DOI]
43Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
44Breast Cancer Histopathology Image Analysis: A Review
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
IEEE Transactions on Biomedical Engineering.2017;61(5)281
[DOI]
45Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
46Introduction of Artificial Intelligence in Pathology
Saad Ullah Akram,Talha Qaiser,Simon Graham,Juho Kannala,Janne Heikkilä,Nasir Rajpoot
Hanyang Medical Reviews.2018;11039(2)69
[DOI]
47Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
48Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Afiqah Abu Samah,Mohammad Faizal Ahmad Fauzi,Sarina Mansor
Toxicologic Pathology.2017;44(5)102
[DOI]
49Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Balamurali Murugesan,Sakthivel Selvaraj,Kaushik Sarveswaran,Keerthi Ram,Jayaraj Joseph,Mohanasankar Sivaprakasam,John E. Tomaszewski,Aaron D. Ward
Toxicologic Pathology.2019;44(5)27
[DOI]
50Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Hao Chen,Qi Dou,Xiaojuan Qi,Jie-Zhi Cheng,Pheng-Ann Heng
Toxicologic Pathology.2020;44(5)231
[DOI]
51A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution
Adnan Mujahid Khan,Nasir Rajpoot,Darren Treanor,Derek Magee
IEEE Transactions on Biomedical Engineering.2014;61(6)1729
[DOI]
52Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(6)29
[DOI]
53Efficient deep learning model for mitosis detection using breast histopathology images
Oscar A. Jimenez-del-Toro,Mikael Rousson,Martin Hedlund,Mats Andersson,Ludwig Jacobsson,Gunnar Läthén,Björn Norell,Henning Müller,Manfredo Atzori,Metin N. Gurcan,John E. Tomaszewski
Computerized Medical Imaging and Graphics.2018;64(6)33
[DOI]
54Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy
Topaz Gilad,Jose Reyes,Jia-Yun Chen,Galit Lahav,Tammy Riklin Raviv,Robert Murphy
Bioinformatics.2018;64(6)33
[DOI]
55DCAN: Deep contour-aware networks for object instance segmentation from histology images
Hao Chen,Xiaojuan Qi,Lequan Yu,Qi Dou,Jing Qin,Pheng-Ann Heng
Medical Image Analysis.2017;36(6)135
[DOI]
56Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)135
[DOI]
57Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(1)29
[DOI]
58Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
59Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
Huangjing Lin,Hao Chen,Qi Dou,Liansheng Wang,Jing Qin,Pheng-Ann Heng
Computerized Medical Imaging and Graphics.2018;38(5)539
[DOI]
60Gland segmentation in colon histology images: The glas challenge contest
Korsuk Sirinukunwattana,Josien P.W. Pluim,Hao Chen,Xiaojuan Qi,Pheng-Ann Heng,Yun Bo Guo,Li Yang Wang,Bogdan J. Matuszewski,Elia Bruni,Urko Sanchez,Anton Böhm,Olaf Ronneberger,Bassem Ben Cheikh,Daniel Racoceanu,Philipp Kainz,Michael Pfeiffer,Martin Urschler,David R.J. Snead,Nasir M. Rajpoot
Medical Image Analysis.2017;35(5)489
[DOI]
61An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;35(5)1
[DOI]
62Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
63Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Mitko Veta,Paul J. van Diest,Mehdi Jiwa,Shaimaa Al-Janabi,Josien P. W. Pluim,Anna Sapino
PLOS ONE.2016;11(8)e0161286
[DOI]
64Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Mustafa Ustuner,Gokhan Bilgin
PLOS ONE.2015;11(8)540
[DOI]
65Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Zanariah Zainudin,Siti Mariyam Shamsuddin,Shafaatunnur Hasan
PLOS ONE.2020;921(8)43
[DOI]
66Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Maschenka Balkenhol,Nico Karssemeijer,Geert J. S. Litjens,Jeroen van der Laak,Francesco Ciompi,David Tellez,Metin N. Gurcan,John E. Tomaszewski
PLOS ONE.2018;921(8)34
[DOI]
67Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
PLOS ONE.2014;9041(8)90410B
[DOI]
68Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Huseyin Cukur,Gokhan Bilgin
PLOS ONE.2017;9041(8)1
[DOI]
69Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
PLOS ONE.2013;8150(8)411
[DOI]
70Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Boqian Wu,Tasleem Kausar,Qiao Xiao,Mingjiang Wang,Wenfeng Wang,Binwen Fan,Dandan Sun
PLOS ONE.2017;723(8)249
[DOI]
71Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Nikola G. Shakev,Sevil A. Ahmed,Vasil L. Popov,Andon V. Topalov
PLOS ONE.2018;723(8)589
[DOI]
72Machine learning approaches for pathologic diagnosis
Daisuke Komura,Shumpei Ishikawa
Virchows Archiv.2019;475(2)131
[DOI]
73Deep learning in neural networks: An overview
Jürgen Schmidhuber
Neural Networks.2015;61(2)85
[DOI]
74Deep learning in neural networks: An overview
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Neural Networks.2017;61(2)133
[DOI]
75A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
David Romo-Bucheli,Andrew Janowczyk,Hannah Gilmore,Eduardo Romero,Anant Madabhushi
Cytometry Part A.2017;91(6)566
[DOI]
76An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
77An unsupervised feature learning framework for basal cell carcinoma image analysis
S. Kaushik,S. Vijaya Raghavan,B. Sivaselvan
Artificial Intelligence in Medicine.2019;1045(2)254
[DOI]
78Blind colour separation of H&E stained histological images by linearly transforming the colour space
R. CELIS,D. ROMO,E. ROMERO
Journal of Microscopy.2015;260(3)377
[DOI]
79Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection
Huangjing Lin,Hao Chen,Simon Graham,Qi Dou,Nasir Rajpoot,Pheng-Ann Heng
IEEE Transactions on Medical Imaging.2019;38(8)1948
[DOI]
80Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review
Jia-Mei Chen,Yan Li,Jun Xu,Lei Gong,Lin-Wei Wang,Wen-Lou Liu,Juan Liu
Tumor Biology.2017;39(3)101042831769455
[DOI]
81Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(3)86
[DOI]
82Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Shahab Ensafi,Shijian Lu,Ashraf A. Kassim,Chew Lim Tan
Computers in Biology and Medicine.2014;85(3)3321
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs