Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1433  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image
Spoorthi Ravi Banavar,Prashanthi Chippagiri,Rohit Pandurangappa,Saileela Annavajjula,Premalatha Bidadi Rajashekaraiah
Analytical Cellular Pathology.2016;2016()1
[DOI]
2Reinforced quasi-random forest
Angshuman Paul,Dipti Prasad Mukherjee
Pattern Recognition.2019;94()13
[DOI]
3SlideJ: An ImageJ plugin for automated processing of whole slide images
Vincenzo Della Mea,Giulia L. Baroni,David Pilutti,Carla Di Loreto,Helmut Ahammer
PLOS ONE.2017;12(7)e0180540
[DOI]
4Primer for Image Informatics in Personalized Medicine
Young Hwan Chang,Patrick Foley,Vahid Azimi,Rohan Borkar,Jonathan Lefman
Procedia Engineering.2016;159(7)58
[DOI]
5Primer for Image Informatics in Personalized Medicine
Syed Fawad Hussain Naqvi,Salahuddin Ayubi,Ammara Nasim,Zeeshan Zafar
Procedia Engineering.2020;70(7)75
[DOI]
6Breast cancer image classification using pattern-based Hyper Conceptual Sampling method
Tooba Salahuddin,Fatima Haouari,Fahad Islam,Rahma Ali,Sara Al-Rasbi,Nada Aboueata,Eman Rezk,Ali Jaoua
Informatics in Medicine Unlocked.2018;13(7)176
[DOI]
7Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology
Andreas Heindl,Sidra Nawaz,Yinyin Yuan
Laboratory Investigation.2015;95(4)377
[DOI]
8Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
Maqlin Paramanandam,Michael O’Byrne,Bidisha Ghosh,Joy John Mammen,Marie Therese Manipadam,Robinson Thamburaj,Vikram Pakrashi,Pei-Yi Chu
PLOS ONE.2016;11(9)e0162053
[DOI]
9PartMitosis: A Partially Supervised Deep Learning Framework for Mitosis Detection in Breast Cancer Histopathology Images
Meriem Sebai,Tianjiang Wang,Saad Ali Al-Fadhli
IEEE Access.2020;8(9)45133
[DOI]
10Exploring the Function of Cell Shape and Size during Mitosis
Clotilde Cadart,Ewa Zlotek-Zlotkiewicz,Maël Le Berre,Matthieu Piel,Helen K. Matthews
Developmental Cell.2014;29(2)159
[DOI]
11Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data
George Lee,David Edmundo Romo Bucheli,Anant Madabhushi,Daoqiang Zhang
PLOS ONE.2016;11(7)e0159088
[DOI]
12A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(7)1
[DOI]
13Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Yoshimasa Kawazoe,Kiminori Shimamoto,Ryohei Yamaguchi,Yukako Shintani-Domoto,Hiroshi Uozaki,Masashi Fukayama,Kazuhiko Ohe
Journal of Imaging.2018;4(7)91
[DOI]
14Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Zhaoyang Xu,Carlos Fernádez Moro,Danyil Kuznyecov,Béla Bozóky,Le Dong,Qianni Zhang
Journal of Imaging.2018;4(7)86
[DOI]
15Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(7)165
[DOI]
16Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images
Yiqing Liu,Xi Li,Aiping Zheng,Xihan Zhu,Shuting Liu,Mengying Hu,Qianjiang Luo,Huina Liao,Mubiao Liu,Yonghong He,Yupeng Chen
Frontiers in Molecular Biosciences.2020;7(7)165
[DOI]
17Imagining the future of bioimage analysis
Erik Meijering,Anne E Carpenter,Hanchuan Peng,Fred A Hamprecht,Jean-Christophe Olivo-Marin
Nature Biotechnology.2016;34(12)1250
[DOI]
18A survey on automated cancer diagnosis from histopathology images
J. Angel Arul Jothi,V. Mary Anita Rajam
Artificial Intelligence Review.2017;48(1)31
[DOI]
19Cell words: Modelling the visual appearance of cells in histopathology images
Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computerized Medical Imaging and Graphics.2015;42(1)16
[DOI]
20Cell words: Modelling the visual appearance of cells in histopathology images
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Computerized Medical Imaging and Graphics.2014;42(1)1360
[DOI]
21A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor
Christof A. Bertram,Marc Aubreville,Christian Marzahl,Andreas Maier,Robert Klopfleisch
Scientific Data.2019;6(1)1360
[DOI]
22Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Gabriel Jiménez,Daniel Racoceanu
Frontiers in Bioengineering and Biotechnology.2019;7(1)1360
[DOI]
23Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Mateo Puerto,Tania Vargas,Angel Cruz-Roa
Frontiers in Bioengineering and Biotechnology.2016;7(1)1
[DOI]
24Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Santiago López-Tapia,José Aneiros-Fernández,Nicolás Pérez de la Blanca
Frontiers in Bioengineering and Biotechnology.2019;11435(1)135
[DOI]
25Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Mohammad F. A. Fauzi,Mohammad F. Jamaluddin,Jenny T. H. Lee,Kean H. Teoh,Lai M. Looi
Frontiers in Bioengineering and Biotechnology.2018;11435(1)61
[DOI]
26Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
Frontiers in Bioengineering and Biotechnology.2014;11435(1)1279
[DOI]
27Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
Pushpak Pati,Antonio Foncubierta-Rodriguez,Orcun Goksel,Maria Gabrani
Frontiers in Bioengineering and Biotechnology.2020;11435(1)486
[DOI]
28Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal.2018;16(1)34
[DOI]
29A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks
Xiaomin Zhou,Chen Li,Md Mamunur Rahaman,Yudong Yao,Shiliang Ai,Changhao Sun,Qian Wang,Yong Zhang,Mo Li,Xiaoyan Li,Tao Jiang,Dan Xue,Shouliang Qi,Yueyang Teng
IEEE Access.2020;8(1)90931
[DOI]
30Deep learning in robotics: a review of recent research
Harry A. Pierson,Michael S. Gashler
Advanced Robotics.2017;31(16)821
[DOI]
31Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
32Breast Cancer Histopathology Image Analysis: A Review
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
IEEE Transactions on Biomedical Engineering.2017;61(5)281
[DOI]
33Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
34Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
35Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Hao Chen,Qi Dou,Xiaojuan Qi,Jie-Zhi Cheng,Pheng-Ann Heng
Toxicologic Pathology.2020;44(5)231
[DOI]
36Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(5)29
[DOI]
37Efficient deep learning model for mitosis detection using breast histopathology images
Oscar A. Jimenez-del-Toro,Mikael Rousson,Martin Hedlund,Mats Andersson,Ludwig Jacobsson,Gunnar Läthén,Björn Norell,Henning Müller,Manfredo Atzori,Metin N. Gurcan,John E. Tomaszewski
Computerized Medical Imaging and Graphics.2018;64(5)33
[DOI]
38Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy
Topaz Gilad,Jose Reyes,Jia-Yun Chen,Galit Lahav,Tammy Riklin Raviv,Robert Murphy
Bioinformatics.2018;64(5)33
[DOI]
39DCAN: Deep contour-aware networks for object instance segmentation from histology images
Hao Chen,Xiaojuan Qi,Lequan Yu,Qi Dou,Jing Qin,Pheng-Ann Heng
Medical Image Analysis.2017;36(5)135
[DOI]
40Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(5)29
[DOI]
41Computer-Aided Histopathological Image Analysis Techniques for Automated Nuclear Atypia Scoring of Breast Cancer: a Review
Asha Das,Madhu S. Nair,S. David Peter
Journal of Digital Imaging.2020;104(5)29
[DOI]
42Gland segmentation in colon histology images: The glas challenge contest
Korsuk Sirinukunwattana,Josien P.W. Pluim,Hao Chen,Xiaojuan Qi,Pheng-Ann Heng,Yun Bo Guo,Li Yang Wang,Bogdan J. Matuszewski,Elia Bruni,Urko Sanchez,Anton Böhm,Olaf Ronneberger,Bassem Ben Cheikh,Daniel Racoceanu,Philipp Kainz,Michael Pfeiffer,Martin Urschler,David R.J. Snead,Nasir M. Rajpoot
Medical Image Analysis.2017;35(5)489
[DOI]
43An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;35(5)1
[DOI]
44An Ensemble Approach for Classification of Breast Histopathology Images
Nassima Dif,Zakaria Elberrichi
IETE Journal of Research.2020;12090(5)279
[DOI]
45Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
Mitko Veta,Paul J. van Diest,Mehdi Jiwa,Shaimaa Al-Janabi,Josien P. W. Pluim,Anna Sapino
PLOS ONE.2016;11(8)e0161286
[DOI]
46MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Md Zahangir Alom,Theus Aspiras,Tarek M. Taha,T.J. Bowen,Vijayan K. Asari
IEEE Access.2020;8(8)68695
[DOI]
47MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
IEEE Access.2014;9041(8)90410B
[DOI]
48MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Huseyin Cukur,Gokhan Bilgin
IEEE Access.2017;9041(8)1
[DOI]
49MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
IEEE Access.2013;8150(8)411
[DOI]
50MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Boqian Wu,Tasleem Kausar,Qiao Xiao,Mingjiang Wang,Wenfeng Wang,Binwen Fan,Dandan Sun
IEEE Access.2017;723(8)249
[DOI]
51MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Nikola G. Shakev,Sevil A. Ahmed,Vasil L. Popov,Andon V. Topalov
IEEE Access.2018;723(8)589
[DOI]
52MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Meriem Sebai,Xinggang Wang,Tianjiang Wang
Medical & Biological Engineering & Computing.2020;58(7)1603
[DOI]
53Deep learning in neural networks: An overview
Jürgen Schmidhuber
Neural Networks.2015;61(7)85
[DOI]
54A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
David Romo-Bucheli,Andrew Janowczyk,Hannah Gilmore,Eduardo Romero,Anant Madabhushi
Cytometry Part A.2017;91(6)566
[DOI]
55An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
56An unsupervised feature learning framework for basal cell carcinoma image analysis
Lyndon Chan,Mahdi Hosseini,Corwyn Rowsell,Konstantinos Plataniotis,Savvas Damaskinos
Artificial Intelligence in Medicine.2019;64(2)10661
[DOI]
57Blind colour separation of H&E stained histological images by linearly transforming the colour space
R. CELIS,D. ROMO,E. ROMERO
Journal of Microscopy.2015;260(3)377
[DOI]
58Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]
Samuel Ortega,Martin Halicek,Himar Fabelo,Gustavo M. Callico,Baowei Fei
Biomedical Optics Express.2020;11(6)3195
[DOI]
59Deep learning in digital pathology image analysis: a survey
Shujian Deng,Xin Zhang,Wen Yan,Eric I.-Chao Chang,Yubo Fan,Maode Lai,Yan Xu
Frontiers of Medicine.2020;11(6)3195
[DOI]
60Deep learning in digital pathology image analysis: a survey
Fangjian Han,Li Yu,Yi Jiang
Frontiers of Medicine.2020;11(6)2953
[DOI]
61Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review
Jia-Mei Chen,Yan Li,Jun Xu,Lei Gong,Lin-Wei Wang,Wen-Lou Liu,Juan Liu
Tumor Biology.2017;39(3)101042831769455
[DOI]
62Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(3)86
[DOI]
63Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Shahab Ensafi,Shijian Lu,Ashraf A. Kassim,Chew Lim Tan
Computers in Biology and Medicine.2014;85(3)3321
[DOI]
64Translational AI and Deep Learning in Diagnostic Pathology
Ahmed Serag,Adrian Ion-Margineanu,Hammad Qureshi,Ryan McMillan,Marie-Judith Saint Martin,Jim Diamond,Paul O'Reilly,Peter Hamilton
Frontiers in Medicine.2019;6(3)3321
[DOI]
65Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides
Matthew Balazsi,Paula Blanco,Pablo Zoroquiain,Martin D. Levine,Miguel N. Burnier
Journal of Medical Imaging.2016;3(2)027501
[DOI]
66DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(2)121
[DOI]
67Artificial Intelligence for the Otolaryngologist: A State of the Art Review
Andrés M. Bur,Matthew Shew,Jacob New
Otolaryngology–Head and Neck Surgery.2019;160(4)603
[DOI]
68Assessment of algorithms for mitosis detection in breast cancer histopathology images
Mitko Veta,Paul J. van Diest,Stefan M. Willems,Haibo Wang,Anant Madabhushi,Angel Cruz-Roa,Fabio Gonzalez,Anders B.L. Larsen,Jacob S. Vestergaard,Anders B. Dahl,Dan C. Ciresan,Jürgen Schmidhuber,Alessandro Giusti,Luca M. Gambardella,F. Boray Tek,Thomas Walter,Ching-Wei Wang,Satoshi Kondo,Bogdan J. Matuszewski,Frederic Precioso,Violet Snell,Josef Kittler,Teofilo E. de Campos,Adnan M. Khan,Nasir M. Rajpoot,Evdokia Arkoumani,Miangela M. Lacle,Max A. Viergever,Josien P.W. Pluim
Medical Image Analysis.2015;20(1)237
[DOI]
69Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(1)19
[DOI]
70Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
71Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
Esther Abels,Liron Pantanowitz,Famke Aeffner,Mark D Zarella,Jeroen Laak,Marilyn M Bui,Venkata NP Vemuri,Anil V Parwani,Jeff Gibbs,Emmanuel Agosto-Arroyo,Andrew H Beck,Cleopatra Kozlowski
The Journal of Pathology.2019;249(3)286
[DOI]
72Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
Mitko Veta,Yujing J. Heng,Nikolas Stathonikos,Babak Ehteshami Bejnordi,Francisco Beca,Thomas Wollmann,Karl Rohr,Manan A. Shah,Dayong Wang,Mikael Rousson,Martin Hedlund,David Tellez,Francesco Ciompi,Erwan Zerhouni,David Lanyi,Matheus Viana,Vassili Kovalev,Vitali Liauchuk,Hady Ahmady Phoulady,Talha Qaiser,Simon Graham,Nasir Rajpoot,Erik Sjöblom,Jesper Molin,Kyunghyun Paeng,Sangheum Hwang,Sunggyun Park,Zhipeng Jia,Eric I-Chao Chang,Yan Xu,Andrew H. Beck,Paul J. van Diest,Josien P.W. Pluim
Medical Image Analysis.2019;54(3)111
[DOI]
73Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Yao Xue,Gilbert Bigras,Judith Hugh,Nilanjan Ray
IEEE Transactions on Medical Imaging.2019;38(11)2632
[DOI]
74Histo-genomics: digital pathology at the forefront of precision medicine
Ivraym Barsoum,Eriny Tawedrous,Hala Faragalla,George M. Yousef
Diagnosis.2019;6(3)203
[DOI]
75Histo-genomics: digital pathology at the forefront of precision medicine
Ruqayya Awan,Nada Aloraidi,Uvais Qidwai,Nasir Rajpoot
Diagnosis.2016;6(3)70
[DOI]
76Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Fuyong Xing,Lin Yang
IEEE Reviews in Biomedical Engineering.2016;9(3)234
[DOI]
77Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review
Veena Dodballapur,Yang Song,Heng Huang,Mei Chen,Wojciech Chrzanowski,Weidong Cai
IEEE Reviews in Biomedical Engineering.2019;9(3)1855
[DOI]
78Automated Histology Analysis: Opportunities for signal processing
Michael T McCann,John A. Ozolek,Carlos A. Castro,Bahram Parvin,Jelena Kovacevic
IEEE Signal Processing Magazine.2015;32(1)78
[DOI]
79Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response
Maki Ogura,Yoichiro Yamamoto,Hitoshi Miyashita,Hiroyuki Kumamoto,Manabu Fukumoto
Medical Molecular Morphology.2016;49(2)76
[DOI]
80A Comparative Evaluation of Texture Features for Semantic Segmentation of Breast Histopathological Images
R. Rashmi,Keerthana Prasad,Chethana Babu K. Udupa,V. Shwetha
IEEE Access.2020;8(2)64331
[DOI]
81A Comparative Evaluation of Texture Features for Semantic Segmentation of Breast Histopathological Images
Saad Ullah Akram,Talha Qaiser,Simon Graham,Juho Kannala,Janne Heikkilä,Nasir Rajpoot
IEEE Access.2018;11039(2)69
[DOI]
82A Comparative Evaluation of Texture Features for Semantic Segmentation of Breast Histopathological Images
Afiqah Abu Samah,Mohammad Faizal Ahmad Fauzi,Sarina Mansor
IEEE Access.2017;11039(2)102
[DOI]
83A Comparative Evaluation of Texture Features for Semantic Segmentation of Breast Histopathological Images
Balamurali Murugesan,Sakthivel Selvaraj,Kaushik Sarveswaran,Keerthi Ram,Jayaraj Joseph,Mohanasankar Sivaprakasam,John E. Tomaszewski,Aaron D. Ward
IEEE Access.2019;11039(2)27
[DOI]
84A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution
Adnan Mujahid Khan,Nasir Rajpoot,Darren Treanor,Derek Magee
IEEE Transactions on Biomedical Engineering.2014;61(6)1729
[DOI]
85Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)1729
[DOI]
86Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
87Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
Huangjing Lin,Hao Chen,Qi Dou,Liansheng Wang,Jing Qin,Pheng-Ann Heng
Computerized Medical Imaging and Graphics.2018;38(5)539
[DOI]
88Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
89Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Mustafa Ustuner,Gokhan Bilgin
IEEE Reviews in Biomedical Engineering.2015;7(5)540
[DOI]
90Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Zanariah Zainudin,Siti Mariyam Shamsuddin,Shafaatunnur Hasan
IEEE Reviews in Biomedical Engineering.2020;921(5)43
[DOI]
91Value of public challenges for the development of pathology deep learning algorithms
DouglasJoseph Hartman,JeroenA. W. M. Van Der Laak,MetinN Gurcan,Liron Pantanowitz
Journal of Pathology Informatics.2020;11(1)7
[DOI]
92Value of public challenges for the development of pathology deep learning algorithms
Maschenka Balkenhol,Nico Karssemeijer,Geert J. S. Litjens,Jeroen van der Laak,Francesco Ciompi,David Tellez,Metin N. Gurcan,John E. Tomaszewski
Journal of Pathology Informatics.2018;11(1)34
[DOI]
93Machine learning approaches for pathologic diagnosis
Daisuke Komura,Shumpei Ishikawa
Virchows Archiv.2019;475(2)131
[DOI]
94Machine learning approaches for pathologic diagnosis
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Virchows Archiv.2017;475(2)133
[DOI]
95Machine learning approaches for pathologic diagnosis
S. Kaushik,S. Vijaya Raghavan,B. Sivaselvan
Virchows Archiv.2019;1045(2)254
[DOI]
96Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses
Liron Pantanowitz,Douglas Hartman,Yan Qi,Eun Yoon Cho,Beomseok Suh,Kyunghyun Paeng,Rajiv Dhir,Pamela Michelow,Scott Hazelhurst,Sang Yong Song,Soo Youn Cho
Diagnostic Pathology.2020;15(1)254
[DOI]
97Review of the current state of digital image analysis in breast pathology
Martin C. Chang,Miralem Mrkonjic
The Breast Journal.2020;26(6)1208
[DOI]
98Review of the current state of digital image analysis in breast pathology
Zanariah Zainudin,Siti Mariyam Shamsuddin,Shafaatunnur Hasan
The Breast Journal.2020;1085(6)235
[DOI]
99Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection
Huangjing Lin,Hao Chen,Simon Graham,Qi Dou,Nasir Rajpoot,Pheng-Ann Heng
IEEE Transactions on Medical Imaging.2019;38(8)1948
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs