Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 561  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1PartMitosis: A Partially Supervised Deep Learning Framework for Mitosis Detection in Breast Cancer Histopathology Images
Meriem Sebai,Tianjiang Wang,Saad Ali Al-Fadhli
IEEE Access.2020;8()45133
[DOI]
2Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning
Fang Liu,Bochen Guan,Zhaoye Zhou,Alexey Samsonov,Humberto Rosas,Kevin Lian,Ruchi Sharma,Andrew Kanarek,John Kim,Ali Guermazi,Richard Kijowski
Radiology: Artificial Intelligence.2019;1(3)180091
[DOI]
3Deep learning for automated skeletal bone age assessment in X-ray images
C. Spampinato,S. Palazzo,D. Giordano,M. Aldinucci,R. Leonardi
Medical Image Analysis.2017;36(3)41
[DOI]
4DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(3)121
[DOI]
5Simultaneous Cell Detection and Classification in Bone Marrow Histology Images
Tzu-Hsi Song,Victor Sanchez,Hesham EI Daly,Nasir M. Rajpoot
IEEE Journal of Biomedical and Health Informatics.2019;23(4)1469
[DOI]
6Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(4)19
[DOI]
7Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)19
[DOI]
8Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Hao Chen,Xi Wang,Pheng Ann Heng
BioMedical Engineering OnLine.2016;17(1)1204
[DOI]
9High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi,Fabio González,Yuanquan Wang
PLOS ONE.2018;13(5)e0196828
[DOI]
10High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Xiang Li,Wei Li,Mengmeng Zhang
PLOS ONE.2018;11257(5)227
[DOI]
11Hyperspectral Superpixel-Wise Glioblastoma Tumor Detection in Histological Samples
Samuel Ortega,Himar Fabelo,Martin Halicek,Rafael Camacho,María de la Luz Plaza,Gustavo M. Callicó,Baowei Fei
Applied Sciences.2020;10(13)4448
[DOI]
12A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(13)1
[DOI]
13Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(13)165
[DOI]
14Classification of radiographic lung pattern based on texture analysis and machine learning
Youngmin Yoon,Taesung Hwang,Hojung Choi,Heechun Lee
Journal of Veterinary Science.2019;20(4)165
[DOI]
15Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
K. Sabeena Beevi,Madhu S. Nair,G.R. Bindu
Biocybernetics and Biomedical Engineering.2019;39(1)214
[DOI]
16Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
Hesham Alghodhaifi,Abdulmajeed Alghodhaifi,Mohammed Alghodhaifi
Biocybernetics and Biomedical Engineering.2019;39(1)374
[DOI]
17Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
Eduardo Romero,Natasha Lepore,Angel Cruz-Roa,John Arevalo,Ajay Basavanhally,Anant Madabhushi,Fabio González
Biocybernetics and Biomedical Engineering.2015;9287(1)92870G
[DOI]
18Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
19Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Tao Wan,Wanshu Zhang,Min Zhu,Jianhui Chen,Alin Achim,Zengchang Qin
Neurocomputing.2017;237(3)291
[DOI]
20Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Zhaoxuan Ma,Jiayun Li,Hootan Salemi,Corey Arnold,Beatrice S. Knudsen,Arkadiusz Gertych,Nathan Ing,Metin N. Gurcan,John E. Tomaszewski
Neurocomputing.2018;237(3)46
[DOI]
21Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Neurocomputing.2014;237(3)1360
[DOI]
22Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Ashkan Tashk,Mohammad Sadegh Helfroush,Habibollah Danyali,Mojgan Akbarzadeh-jahromi
Applied Mathematical Modelling.2015;39(20)6165
[DOI]
23Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Applied Mathematical Modelling.2017;723(20)839
[DOI]
24Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks
Victor Andrew A. Antonio,Naoaki Ono,Akira Saito,Tetsuo Sato,Md. Altaf-Ul-Amin,Shigehiko Kanaya
International Journal of Computer Assisted Radiology and Surgery.2018;13(12)1905
[DOI]
25Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features
Ahmed T. Sahlol,Philip Kollmannsberger,Ahmed A. Ewees
Scientific Reports.2020;10(1)1905
[DOI]
26A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains
Lyndon Chan,Mahdi S. Hosseini,Konstantinos N. Plataniotis
International Journal of Computer Vision.2020;10(1)1905
[DOI]
27Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology
Kaustav Bera,Kurt A. Schalper,David L. Rimm,Vamsidhar Velcheti,Anant Madabhushi
Nature Reviews Clinical Oncology.2019;16(11)703
[DOI]
28A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Elena Casiraghi,Veronica Huber,Marco Frasca,Mara Cossa,Matteo Tozzi,Licia Rivoltini,Biagio Eugenio Leone,Antonello Villa,Barbara Vergani
BMC Bioinformatics.2018;19(S10)703
[DOI]
29A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Wei Shao,Liang Sun,Daoqiang Zhang
BMC Bioinformatics.2018;19(S10)199
[DOI]
30A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Oinam Vivek Singh,Prakash Choudhary,Khelchandra Thongam
BMC Bioinformatics.2020;1148(S10)36
[DOI]
31A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
BMC Bioinformatics.2014;1148(S10)1279
[DOI]
32AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
Aldo Zaimi,Maxime Wabartha,Victor Herman,Pierre-Louis Antonsanti,Christian S. Perone,Julien Cohen-Adad
Scientific Reports.2018;8(1)1279
[DOI]
33Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry
Damon T. DePaoli,Prudencio Tossou,Martin Parent,Dominic Sauvageau,Daniel C. Côté
Scientific Reports.2019;9(1)1279
[DOI]
34A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks
Xiaomin Zhou,Chen Li,Md Mamunur Rahaman,Yudong Yao,Shiliang Ai,Changhao Sun,Qian Wang,Yong Zhang,Mo Li,Xiaoyan Li,Tao Jiang,Dan Xue,Shouliang Qi,Yueyang Teng
IEEE Access.2020;8(1)90931
[DOI]
35Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Yao Xue,Gilbert Bigras,Judith Hugh,Nilanjan Ray
IEEE Transactions on Medical Imaging.2019;38(11)2632
[DOI]
36Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(11)29
[DOI]
37Improved Random Forest for Classification
Angshuman Paul,Dipti Prasad Mukherjee,Prasun Das,Abhinandan Gangopadhyay,Appa Rao Chintha,Saurabh Kundu
IEEE Transactions on Image Processing.2018;27(8)4012
[DOI]
38Deep learning techniques for detecting preneoplastic and neoplastic lesions in human colorectal histological images
Paola Sena,Rita Fioresi,Francesco Faglioni,Lorena Losi,Giovanni Faglioni,Luca Roncucci
Oncology Letters.2019;27(8)4012
[DOI]
39Deep learning techniques for detecting preneoplastic and neoplastic lesions in human colorectal histological images
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
Oncology Letters.2017;27(8)281
[DOI]
40A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection
Muhammad Waseem Tahir,Nayyer Abbas Zaidi,Adeel Akhtar Rao,Roland Blank,Michael J. Vellekoop,Walter Lang
IEEE Transactions on NanoBioscience.2018;17(3)281
[DOI]
41A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection
Metin N. Gurcan,Anant Madabhushi,Angel Cruz-Roa,Ajay Basavanhally,Fabio González,Hannah Gilmore,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi
IEEE Transactions on NanoBioscience.2014;9041(3)904103
[DOI]
42Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
43Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
44Mitosis detection in breast cancer histopathology images using hybrid feature space
Noorulain Maroof,Asifullah Khan,Shahzad Ahmad Qureshi,Aziz ul Rehman,Rafiullah Khan Khalil,Seong-O Shim
Photodiagnosis and Photodynamic Therapy.2020;31(5)101885
[DOI]
45Conceptual data sampling for breast cancer histology image classification
Eman Rezk,Zainab Awan,Fahad Islam,Ali Jaoua,Somaya Al Maadeed,Nan Zhang,Gautam Das,Nasir Rajpoot
Computers in Biology and Medicine.2017;89(5)59
[DOI]
46Conceptual data sampling for breast cancer histology image classification
Matko Saric,Mladen Russo,Maja Stella,Marjan Sikora
Computers in Biology and Medicine.2019;89(5)1
[DOI]
47Conceptual data sampling for breast cancer histology image classification
Dev Kumar Das,Subhranil Koley,Chandan Chakraborty,Asok Kumar Maiti
Computers in Biology and Medicine.2014;89(5)000354
[DOI]
48Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(5)29
[DOI]
49Glomerulus Classification and Detection Based on Convolutional Neural Networks
Jaime Gallego,Anibal Pedraza,Samuel Lopez,Georg Steiner,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Imaging.2018;4(1)20
[DOI]
50Glomerulus Classification and Detection Based on Convolutional Neural Networks
Fattaneh Pourakpour,Hassan Ghassemian
Journal of Imaging.2015;4(1)269
[DOI]
51Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
52Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
53Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Nassima Dif,Zakaria Elberrichi
IEEE Reviews in Biomedical Engineering.2020;12090(5)279
[DOI]
54An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;12090(5)1
[DOI]
55Automated Classification of Benign and Malignant Proliferative Breast Lesions
Evani Radiya-Dixit,David Zhu,Andrew H. Beck
Scientific Reports.2017;7(1)1
[DOI]
56Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Korsuk Sirinukunwattana,Shan E Ahmed Raza,Yee-Wah Tsang,David R. J. Snead,Ian A. Cree,Nasir M. Rajpoot
IEEE Transactions on Medical Imaging.2016;35(5)1196
[DOI]
57Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Philipp Kainz,Michael Pfeiffer,Martin Urschler
PeerJ.2017;5(5)e3874
[DOI]
58Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
PeerJ.2014;9041(5)90410B
[DOI]
59Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Xulei Yang,Zeng Zeng,Su Yi
IET Computer Vision.2017;11(8)643
[DOI]
60Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Rashika Mishra,Ovidiu Daescu,Patrick Leavey,Dinesh Rakheja,Anita Sengupta
IET Computer Vision.2017;10330(8)12
[DOI]
61MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Md Zahangir Alom,Theus Aspiras,Tarek M. Taha,T.J. Bowen,Vijayan K. Asari
IEEE Access.2020;8(8)68695
[DOI]
62MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
IEEE Access.2013;8150(8)411
[DOI]
63A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily melanocytic neoplasms
Christopher R. Jackson,Aravindhan Sriharan,Louis J. Vaickus
Modern Pathology.2020;33(9)1638
[DOI]
64MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Meriem Sebai,Xinggang Wang,Tianjiang Wang
Medical & Biological Engineering & Computing.2020;58(7)1603
[DOI]
65MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Michael Nalisnik,David A Gutman,Jun Kong,Lee A D Cooper
Medical & Biological Engineering & Computing.2015;58(7)928
[DOI]
66MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Angshuman Paul,Anisha Dey,Dipti Prasad Mukherjee,Jayanthi Sivaswamy,Vijaya Tourani
Medical & Biological Engineering & Computing.2015;9350(7)94
[DOI]
67MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Medical & Biological Engineering & Computing.2017;9350(7)133
[DOI]
68MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Chen Li,Dan Xue,Zhijie Hu,Hao Chen,Yudong Yao,Yong Zhang,Mo Li,Qian Wang,Ning Xu
Medical & Biological Engineering & Computing.2019;1011(7)222
[DOI]
69MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Md. Jamil-Ur Rahman,Rafi Ibn Sultan,Firoz Mahmud,Sazid Al Ahsan,Abdul Matin
Medical & Biological Engineering & Computing.2018;1011(7)0673
[DOI]
70Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
Dev Kumar Das,Pabitra Mitra,Chandan Chakraborty,Sanjoy Chatterjee,Asok Kumar Maiti,Surajit Bose
Multidimensional Systems and Signal Processing.2017;28(3)1031
[DOI]
71A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(3)60
[DOI]
72An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
73A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
Fabio A. Yadavendra,Satish Chand
Machine Vision and Applications.2020;31(6)131
[DOI]
74A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
Meriem Sebai
Machine Vision and Applications.2020;31(6)102
[DOI]
75Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]
Samuel Ortega,Martin Halicek,Himar Fabelo,Gustavo M. Callico,Baowei Fei
Biomedical Optics Express.2020;11(6)3195
[DOI]
76Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie N.C. Shih,John Tomaszewski,Fabio A. González,Anant Madabhushi
Scientific Reports.2017;7(1)3195
[DOI]
77Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Lyndon Chan,Mahdi Hosseini,Corwyn Rowsell,Konstantinos Plataniotis,Savvas Damaskinos
Scientific Reports.2019;7(1)10661
[DOI]
78Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Maximilian Krappmann,Marc Aubreville,Andereas Maier,Christof Bertram,Robert Klopfleisch
Scientific Reports.2018;7(1)245
[DOI]
79Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides Using Convolutional Neural Networks
Samuel Ortega,Martin Halicek,Himar Fabelo,Rafael Camacho,María de la Luz Plaza,Fred Godtliebsen,Gustavo M. Callicó,Baowei Fei
Sensors.2020;20(7)1911
[DOI]
80Automated segmentation of brain cells for clonal analyses in fluorescence microscopy images
Massimo Salvi,Valentina Cerrato,Annalisa Buffo,Filippo Molinari
Journal of Neuroscience Methods.2019;325(7)108348
[DOI]
81Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
82Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Toxicologic Pathology.2017;44(5)821
[DOI]
83Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Y. Yoon,T. Hwang,H. Lee
The Veterinary Journal.2018;237(5)43
[DOI]
84Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Shashwat Lal Das,John Keyser,Yoonsuck Choe
The Veterinary Journal.2015;237(5)1
[DOI]
85Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(5)86
[DOI]
86Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Nada A. Aloraidi,Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computers in Biology and Medicine.2014;85(5)3370
[DOI]
87A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model
Kadir Can Burçak,Ömer Kaan Baykan,Harun Uguz
The Journal of Supercomputing.2020;85(5)3370
[DOI]
88Deep computational pathology in breast cancer
Andrea Duggento,Allegra Conti,Alessandro Mauriello,Maria Guerrisi,Nicola Toschi
Seminars in Cancer Biology.2020;85(5)3370
[DOI]
89Deep learning in mammography and breast histology, an overview and future trends
Azam Hamidinekoo,Erika Denton,Andrik Rampun,Kate Honnor,Reyer Zwiggelaar
Medical Image Analysis.2018;47(5)45
[DOI]
90Artificial intelligence for microscopy: what you should know
Lucas von Chamier,Romain F. Laine,Ricardo Henriques
Biochemical Society Transactions.2019;47(4)1029
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs