Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 270  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning
Fang Liu,Bochen Guan,Zhaoye Zhou,Alexey Samsonov,Humberto Rosas,Kevin Lian,Ruchi Sharma,Andrew Kanarek,John Kim,Ali Guermazi,Richard Kijowski
Radiology: Artificial Intelligence.2019;1(3)180091
[DOI]
2Deep learning for automated skeletal bone age assessment in X-ray images
C. Spampinato,S. Palazzo,D. Giordano,M. Aldinucci,R. Leonardi
Medical Image Analysis.2017;36(3)41
[DOI]
3DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(3)121
[DOI]
4Simultaneous Cell Detection and Classification in Bone Marrow Histology Images
Tzu-Hsi Song,Victor Sanchez,Hesham EI Daly,Nasir M. Rajpoot
IEEE Journal of Biomedical and Health Informatics.2019;23(4)1469
[DOI]
5Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(4)19
[DOI]
6Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)19
[DOI]
7Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Hao Chen,Xi Wang,Pheng Ann Heng
BioMedical Engineering OnLine.2016;17(1)1204
[DOI]
8High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi,Fabio González,Yuanquan Wang
PLOS ONE.2018;13(5)e0196828
[DOI]
9High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Xiang Li,Wei Li,Mengmeng Zhang
PLOS ONE.2018;11257(5)227
[DOI]
10A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(5)1
[DOI]
11Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(5)165
[DOI]
12Classification of radiographic lung pattern based on texture analysis and machine learning
Youngmin Yoon,Taesung Hwang,Hojung Choi,Heechun Lee
Journal of Veterinary Science.2019;20(4)165
[DOI]
13Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
K. Sabeena Beevi,Madhu S. Nair,G.R. Bindu
Biocybernetics and Biomedical Engineering.2019;39(1)214
[DOI]
14Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
Eduardo Romero,Natasha Lepore,Angel Cruz-Roa,John Arevalo,Ajay Basavanhally,Anant Madabhushi,Fabio González
Biocybernetics and Biomedical Engineering.2015;9287(1)92870G
[DOI]
15Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
16Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Tao Wan,Wanshu Zhang,Min Zhu,Jianhui Chen,Alin Achim,Zengchang Qin
Neurocomputing.2017;237(3)291
[DOI]
17Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Zhaoxuan Ma,Jiayun Li,Hootan Salemi,Corey Arnold,Beatrice S. Knudsen,Arkadiusz Gertych,Nathan Ing,Metin N. Gurcan,John E. Tomaszewski
Neurocomputing.2018;237(3)46
[DOI]
18Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Neurocomputing.2014;237(3)1360
[DOI]
19Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Ashkan Tashk,Mohammad Sadegh Helfroush,Habibollah Danyali,Mojgan Akbarzadeh-jahromi
Applied Mathematical Modelling.2015;39(20)6165
[DOI]
20Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Applied Mathematical Modelling.2017;723(20)839
[DOI]
21Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks
Victor Andrew A. Antonio,Naoaki Ono,Akira Saito,Tetsuo Sato,Md. Altaf-Ul-Amin,Shigehiko Kanaya
International Journal of Computer Assisted Radiology and Surgery.2018;13(12)1905
[DOI]
22Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology
Kaustav Bera,Kurt A. Schalper,David L. Rimm,Vamsidhar Velcheti,Anant Madabhushi
Nature Reviews Clinical Oncology.2019;16(11)703
[DOI]
23A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Elena Casiraghi,Veronica Huber,Marco Frasca,Mara Cossa,Matteo Tozzi,Licia Rivoltini,Biagio Eugenio Leone,Antonello Villa,Barbara Vergani
BMC Bioinformatics.2018;19(S10)703
[DOI]
24A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Wei Shao,Liang Sun,Daoqiang Zhang
BMC Bioinformatics.2018;19(S10)199
[DOI]
25A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
BMC Bioinformatics.2014;19(S10)1279
[DOI]
26AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
Aldo Zaimi,Maxime Wabartha,Victor Herman,Pierre-Louis Antonsanti,Christian S. Perone,Julien Cohen-Adad
Scientific Reports.2018;8(1)1279
[DOI]
27Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry
Damon T. DePaoli,Prudencio Tossou,Martin Parent,Dominic Sauvageau,Daniel C. Côté
Scientific Reports.2019;9(1)1279
[DOI]
28Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Yao Xue,Gilbert Bigras,Judith Hugh,Nilanjan Ray
IEEE Transactions on Medical Imaging.2019;38(11)2632
[DOI]
29Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(11)29
[DOI]
30Improved Random Forest for Classification
Angshuman Paul,Dipti Prasad Mukherjee,Prasun Das,Abhinandan Gangopadhyay,Appa Rao Chintha,Saurabh Kundu
IEEE Transactions on Image Processing.2018;27(8)4012
[DOI]
31Improved Random Forest for Classification
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
IEEE Transactions on Image Processing.2017;27(8)281
[DOI]
32A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection
Muhammad Waseem Tahir,Nayyer Abbas Zaidi,Adeel Akhtar Rao,Roland Blank,Michael J. Vellekoop,Walter Lang
IEEE Transactions on NanoBioscience.2018;17(3)281
[DOI]
33A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection
Metin N. Gurcan,Anant Madabhushi,Angel Cruz-Roa,Ajay Basavanhally,Fabio González,Hannah Gilmore,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi
IEEE Transactions on NanoBioscience.2014;9041(3)904103
[DOI]
34Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
35Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
36Conceptual data sampling for breast cancer histology image classification
Eman Rezk,Zainab Awan,Fahad Islam,Ali Jaoua,Somaya Al Maadeed,Nan Zhang,Gautam Das,Nasir Rajpoot
Computers in Biology and Medicine.2017;89(5)59
[DOI]
37Conceptual data sampling for breast cancer histology image classification
Matko Saric,Mladen Russo,Maja Stella,Marjan Sikora
Computers in Biology and Medicine.2019;89(5)1
[DOI]
38Conceptual data sampling for breast cancer histology image classification
Dev Kumar Das,Subhranil Koley,Chandan Chakraborty,Asok Kumar Maiti
Computers in Biology and Medicine.2014;89(5)000354
[DOI]
39Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(5)29
[DOI]
40Glomerulus Classification and Detection Based on Convolutional Neural Networks
Jaime Gallego,Anibal Pedraza,Samuel Lopez,Georg Steiner,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Imaging.2018;4(1)20
[DOI]
41Glomerulus Classification and Detection Based on Convolutional Neural Networks
Fattaneh Pourakpour,Hassan Ghassemian
Journal of Imaging.2015;4(1)269
[DOI]
42Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
43Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
44An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;7(5)1
[DOI]
45Automated Classification of Benign and Malignant Proliferative Breast Lesions
Evani Radiya-Dixit,David Zhu,Andrew H. Beck
Scientific Reports.2017;7(1)1
[DOI]
46Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Korsuk Sirinukunwattana,Shan E Ahmed Raza,Yee-Wah Tsang,David R. J. Snead,Ian A. Cree,Nasir M. Rajpoot
IEEE Transactions on Medical Imaging.2016;35(5)1196
[DOI]
47Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Philipp Kainz,Michael Pfeiffer,Martin Urschler
PeerJ.2017;5(5)e3874
[DOI]
48Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
PeerJ.2014;9041(5)90410B
[DOI]
49Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Xulei Yang,Zeng Zeng,Su Yi
IET Computer Vision.2017;11(8)643
[DOI]
50Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Rashika Mishra,Ovidiu Daescu,Patrick Leavey,Dinesh Rakheja,Anita Sengupta
IET Computer Vision.2017;10330(8)12
[DOI]
51Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
IET Computer Vision.2013;8150(8)411
[DOI]
52Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Michael Nalisnik,David A Gutman,Jun Kong,Lee A D Cooper
IET Computer Vision.2015;8150(8)928
[DOI]
53Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Angshuman Paul,Anisha Dey,Dipti Prasad Mukherjee,Jayanthi Sivaswamy,Vijaya Tourani
IET Computer Vision.2015;9350(8)94
[DOI]
54Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
IET Computer Vision.2017;9350(8)133
[DOI]
55Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Chen Li,Dan Xue,Zhijie Hu,Hao Chen,Yudong Yao,Yong Zhang,Mo Li,Qian Wang,Ning Xu
IET Computer Vision.2019;1011(8)222
[DOI]
56Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
Dev Kumar Das,Pabitra Mitra,Chandan Chakraborty,Sanjoy Chatterjee,Asok Kumar Maiti,Surajit Bose
Multidimensional Systems and Signal Processing.2017;28(3)1031
[DOI]
57A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(3)60
[DOI]
58An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
59Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie N.C. Shih,John Tomaszewski,Fabio A. González,Anant Madabhushi
Scientific Reports.2017;7(1)131
[DOI]
60Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Maximilian Krappmann,Marc Aubreville,Andereas Maier,Christof Bertram,Robert Klopfleisch
Scientific Reports.2018;7(1)245
[DOI]
61Automated segmentation of brain cells for clonal analyses in fluorescence microscopy images
Massimo Salvi,Valentina Cerrato,Annalisa Buffo,Filippo Molinari
Journal of Neuroscience Methods.2019;325(1)108348
[DOI]
62Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
63Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Toxicologic Pathology.2017;44(5)821
[DOI]
64Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Y. Yoon,T. Hwang,H. Lee
The Veterinary Journal.2018;237(5)43
[DOI]
65Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Shashwat Lal Das,John Keyser,Yoonsuck Choe
The Veterinary Journal.2015;237(5)1
[DOI]
66Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(5)86
[DOI]
67Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Nada A. Aloraidi,Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computers in Biology and Medicine.2014;85(5)3370
[DOI]
68Deep learning in mammography and breast histology, an overview and future trends
Azam Hamidinekoo,Erika Denton,Andrik Rampun,Kate Honnor,Reyer Zwiggelaar
Medical Image Analysis.2018;47(5)45
[DOI]
69Artificial intelligence for microscopy: what you should know
Lucas von Chamier,Romain F. Laine,Ricardo Henriques
Biochemical Society Transactions.2019;47(4)1029
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs