Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 375  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64()29
[DOI]
2Improved Random Forest for Classification
Angshuman Paul,Dipti Prasad Mukherjee,Prasun Das,Abhinandan Gangopadhyay,Appa Rao Chintha,Saurabh Kundu
IEEE Transactions on Image Processing.2018;27(8)4012
[DOI]
3Improved Random Forest for Classification
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
IEEE Transactions on Image Processing.2017;27(8)281
[DOI]
4Improved Random Forest for Classification
Metin N. Gurcan,Anant Madabhushi,Angel Cruz-Roa,Ajay Basavanhally,Fabio González,Hannah Gilmore,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi
IEEE Transactions on Image Processing.2014;9041(8)904103
[DOI]
5Deep learning for automated skeletal bone age assessment in X-ray images
C. Spampinato,S. Palazzo,D. Giordano,M. Aldinucci,R. Leonardi
Medical Image Analysis.2017;36(8)41
[DOI]
6DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(8)121
[DOI]
7Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
8Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
9Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(5)19
[DOI]
10Conceptual data sampling for breast cancer histology image classification
Eman Rezk,Zainab Awan,Fahad Islam,Ali Jaoua,Somaya Al Maadeed,Nan Zhang,Gautam Das,Nasir Rajpoot
Computers in Biology and Medicine.2017;89(5)59
[DOI]
11Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)59
[DOI]
12Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Hao Chen,Xi Wang,Pheng Ann Heng
BioMedical Engineering OnLine.2016;17(1)1204
[DOI]
13High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi,Fabio González,Yuanquan Wang
PLOS ONE.2018;13(5)e0196828
[DOI]
14High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Dev Kumar Das,Subhranil Koley,Chandan Chakraborty,Asok Kumar Maiti
PLOS ONE.2014;13(5)000354
[DOI]
15A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(5)1
[DOI]
16Glomerulus Classification and Detection Based on Convolutional Neural Networks
Jaime Gallego,Anibal Pedraza,Samuel Lopez,Georg Steiner,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Imaging.2018;4(1)20
[DOI]
17Glomerulus Classification and Detection Based on Convolutional Neural Networks
Fattaneh Pourakpour,Hassan Ghassemian
Journal of Imaging.2015;4(1)269
[DOI]
18Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
19Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
20Automated Classification of Benign and Malignant Proliferative Breast Lesions
Evani Radiya-Dixit,David Zhu,Andrew H. Beck
Scientific Reports.2017;7(1)97
[DOI]
21Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Korsuk Sirinukunwattana,Shan E Ahmed Raza,Yee-Wah Tsang,David R. J. Snead,Ian A. Cree,Nasir M. Rajpoot
IEEE Transactions on Medical Imaging.2016;35(5)1196
[DOI]
22Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Philipp Kainz,Michael Pfeiffer,Martin Urschler
PeerJ.2017;5(5)e3874
[DOI]
23Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
PeerJ.2014;9041(5)90410B
[DOI]
24Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Xulei Yang,Zeng Zeng,Su Yi
IET Computer Vision.2017;11(8)643
[DOI]
25Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Rashika Mishra,Ovidiu Daescu,Patrick Leavey,Dinesh Rakheja,Anita Sengupta
IET Computer Vision.2017;10330(8)12
[DOI]
26Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Michael Nalisnik,David A Gutman,Jun Kong,Lee A D Cooper
IET Computer Vision.2015;10330(8)928
[DOI]
27Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Tao Wan,Wanshu Zhang,Min Zhu,Jianhui Chen,Alin Achim,Zengchang Qin
Neurocomputing.2017;237(8)291
[DOI]
28Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Zhaoxuan Ma,Jiayun Li,Hootan Salemi,Corey Arnold,Beatrice S. Knudsen,Arkadiusz Gertych,Nathan Ing,Metin N. Gurcan,John E. Tomaszewski
Neurocomputing.2018;237(8)46
[DOI]
29Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Neurocomputing.2014;237(8)1360
[DOI]
30Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Ashkan Tashk,Mohammad Sadegh Helfroush,Habibollah Danyali,Mojgan Akbarzadeh-jahromi
Applied Mathematical Modelling.2015;39(20)6165
[DOI]
31Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Angshuman Paul,Anisha Dey,Dipti Prasad Mukherjee,Jayanthi Sivaswamy,Vijaya Tourani
Applied Mathematical Modelling.2015;9350(20)94
[DOI]
32Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Applied Mathematical Modelling.2017;9350(20)133
[DOI]
33Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Applied Mathematical Modelling.2017;723(20)839
[DOI]
34Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
Dev Kumar Das,Pabitra Mitra,Chandan Chakraborty,Sanjoy Chatterjee,Asok Kumar Maiti,Surajit Bose
Multidimensional Systems and Signal Processing.2017;28(3)1031
[DOI]
35A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(3)60
[DOI]
36An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
37Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie N.C. Shih,John Tomaszewski,Fabio A. González,Anant Madabhushi
Scientific Reports.2017;7(2)46450
[DOI]
38Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Maximilian Krappmann,Marc Aubreville,Andereas Maier,Christof Bertram,Robert Klopfleisch
Scientific Reports.2018;7(2)245
[DOI]
39Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
40Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Toxicologic Pathology.2017;44(5)821
[DOI]
41Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Y. Yoon,T. Hwang,H. Lee
The Veterinary Journal.2018;237(5)43
[DOI]
42Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Shashwat Lal Das,John Keyser,Yoonsuck Choe
The Veterinary Journal.2015;237(5)1
[DOI]
43Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(5)86
[DOI]
44Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Nada A. Aloraidi,Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computers in Biology and Medicine.2014;85(5)3370
[DOI]
45Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Wei Shao,Liang Sun,Daoqiang Zhang
Computers in Biology and Medicine.2018;85(5)199
[DOI]
46Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
Computers in Biology and Medicine.2014;85(5)1279
[DOI]
47AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
Aldo Zaimi,Maxime Wabartha,Victor Herman,Pierre-Louis Antonsanti,Christian S. Perone,Julien Cohen-Adad
Scientific Reports.2018;8(1)1279
[DOI]
48Deep learning in mammography and breast histology, an overview and future trends
Azam Hamidinekoo,Erika Denton,Andrik Rampun,Kate Honnor,Reyer Zwiggelaar
Medical Image Analysis.2018;47(1)45
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs