Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 350  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1PartMitosis: A Partially Supervised Deep Learning Framework for Mitosis Detection in Breast Cancer Histopathology Images
Meriem Sebai,Tianjiang Wang,Saad Ali Al-Fadhli
IEEE Access.2020;8()45133
[DOI]
2Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning
Fang Liu,Bochen Guan,Zhaoye Zhou,Alexey Samsonov,Humberto Rosas,Kevin Lian,Ruchi Sharma,Andrew Kanarek,John Kim,Ali Guermazi,Richard Kijowski
Radiology: Artificial Intelligence.2019;1(3)180091
[DOI]
3Deep learning for automated skeletal bone age assessment in X-ray images
C. Spampinato,S. Palazzo,D. Giordano,M. Aldinucci,R. Leonardi
Medical Image Analysis.2017;36(3)41
[DOI]
4DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(3)121
[DOI]
5Simultaneous Cell Detection and Classification in Bone Marrow Histology Images
Tzu-Hsi Song,Victor Sanchez,Hesham EI Daly,Nasir M. Rajpoot
IEEE Journal of Biomedical and Health Informatics.2019;23(4)1469
[DOI]
6Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(4)19
[DOI]
7Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)19
[DOI]
8Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Hao Chen,Xi Wang,Pheng Ann Heng
BioMedical Engineering OnLine.2016;17(1)1204
[DOI]
9High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi,Fabio González,Yuanquan Wang
PLOS ONE.2018;13(5)e0196828
[DOI]
10High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Xiang Li,Wei Li,Mengmeng Zhang
PLOS ONE.2018;11257(5)227
[DOI]
11A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(5)1
[DOI]
12Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(5)165
[DOI]
13Classification of radiographic lung pattern based on texture analysis and machine learning
Youngmin Yoon,Taesung Hwang,Hojung Choi,Heechun Lee
Journal of Veterinary Science.2019;20(4)165
[DOI]
14Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
K. Sabeena Beevi,Madhu S. Nair,G.R. Bindu
Biocybernetics and Biomedical Engineering.2019;39(1)214
[DOI]
15Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
Hesham Alghodhaifi,Abdulmajeed Alghodhaifi,Mohammed Alghodhaifi
Biocybernetics and Biomedical Engineering.2019;39(1)374
[DOI]
16Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
Eduardo Romero,Natasha Lepore,Angel Cruz-Roa,John Arevalo,Ajay Basavanhally,Anant Madabhushi,Fabio González
Biocybernetics and Biomedical Engineering.2015;9287(1)92870G
[DOI]
17Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
18Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Tao Wan,Wanshu Zhang,Min Zhu,Jianhui Chen,Alin Achim,Zengchang Qin
Neurocomputing.2017;237(3)291
[DOI]
19Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Zhaoxuan Ma,Jiayun Li,Hootan Salemi,Corey Arnold,Beatrice S. Knudsen,Arkadiusz Gertych,Nathan Ing,Metin N. Gurcan,John E. Tomaszewski
Neurocomputing.2018;237(3)46
[DOI]
20Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Neurocomputing.2014;237(3)1360
[DOI]
21Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Ashkan Tashk,Mohammad Sadegh Helfroush,Habibollah Danyali,Mojgan Akbarzadeh-jahromi
Applied Mathematical Modelling.2015;39(20)6165
[DOI]
22Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Applied Mathematical Modelling.2017;723(20)839
[DOI]
23Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks
Victor Andrew A. Antonio,Naoaki Ono,Akira Saito,Tetsuo Sato,Md. Altaf-Ul-Amin,Shigehiko Kanaya
International Journal of Computer Assisted Radiology and Surgery.2018;13(12)1905
[DOI]
24Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features
Ahmed T. Sahlol,Philip Kollmannsberger,Ahmed A. Ewees
Scientific Reports.2020;10(1)1905
[DOI]
25Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology
Kaustav Bera,Kurt A. Schalper,David L. Rimm,Vamsidhar Velcheti,Anant Madabhushi
Nature Reviews Clinical Oncology.2019;16(11)703
[DOI]
26A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Elena Casiraghi,Veronica Huber,Marco Frasca,Mara Cossa,Matteo Tozzi,Licia Rivoltini,Biagio Eugenio Leone,Antonello Villa,Barbara Vergani
BMC Bioinformatics.2018;19(S10)703
[DOI]
27A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Wei Shao,Liang Sun,Daoqiang Zhang
BMC Bioinformatics.2018;19(S10)199
[DOI]
28A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Oinam Vivek Singh,Prakash Choudhary,Khelchandra Thongam
BMC Bioinformatics.2020;1148(S10)36
[DOI]
29A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
BMC Bioinformatics.2014;1148(S10)1279
[DOI]
30AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
Aldo Zaimi,Maxime Wabartha,Victor Herman,Pierre-Louis Antonsanti,Christian S. Perone,Julien Cohen-Adad
Scientific Reports.2018;8(1)1279
[DOI]
31Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry
Damon T. DePaoli,Prudencio Tossou,Martin Parent,Dominic Sauvageau,Daniel C. Côté
Scientific Reports.2019;9(1)1279
[DOI]
32A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks
Xiaomin Zhou,Chen Li,Md Mamunur Rahaman,Yudong Yao,Shiliang Ai,Changhao Sun,Qian Wang,Yong Zhang,Mo Li,Xiaoyan Li,Tao Jiang,Dan Xue,Shouliang Qi,Yueyang Teng
IEEE Access.2020;8(1)90931
[DOI]
33Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Yao Xue,Gilbert Bigras,Judith Hugh,Nilanjan Ray
IEEE Transactions on Medical Imaging.2019;38(11)2632
[DOI]
34Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(11)29
[DOI]
35Improved Random Forest for Classification
Angshuman Paul,Dipti Prasad Mukherjee,Prasun Das,Abhinandan Gangopadhyay,Appa Rao Chintha,Saurabh Kundu
IEEE Transactions on Image Processing.2018;27(8)4012
[DOI]
36Improved Random Forest for Classification
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
IEEE Transactions on Image Processing.2017;27(8)281
[DOI]
37A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection
Muhammad Waseem Tahir,Nayyer Abbas Zaidi,Adeel Akhtar Rao,Roland Blank,Michael J. Vellekoop,Walter Lang
IEEE Transactions on NanoBioscience.2018;17(3)281
[DOI]
38A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection
Metin N. Gurcan,Anant Madabhushi,Angel Cruz-Roa,Ajay Basavanhally,Fabio González,Hannah Gilmore,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi
IEEE Transactions on NanoBioscience.2014;9041(3)904103
[DOI]
39Introduction of Artificial Intelligence in Pathology
SangYong Song
Hanyang Medical Reviews.2017;37(2)77
[DOI]
40Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
41Conceptual data sampling for breast cancer histology image classification
Eman Rezk,Zainab Awan,Fahad Islam,Ali Jaoua,Somaya Al Maadeed,Nan Zhang,Gautam Das,Nasir Rajpoot
Computers in Biology and Medicine.2017;89(5)59
[DOI]
42Conceptual data sampling for breast cancer histology image classification
Matko Saric,Mladen Russo,Maja Stella,Marjan Sikora
Computers in Biology and Medicine.2019;89(5)1
[DOI]
43Conceptual data sampling for breast cancer histology image classification
Dev Kumar Das,Subhranil Koley,Chandan Chakraborty,Asok Kumar Maiti
Computers in Biology and Medicine.2014;89(5)000354
[DOI]
44Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(5)29
[DOI]
45Glomerulus Classification and Detection Based on Convolutional Neural Networks
Jaime Gallego,Anibal Pedraza,Samuel Lopez,Georg Steiner,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Imaging.2018;4(1)20
[DOI]
46Glomerulus Classification and Detection Based on Convolutional Neural Networks
Fattaneh Pourakpour,Hassan Ghassemian
Journal of Imaging.2015;4(1)269
[DOI]
47Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
48Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
49An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;7(5)1
[DOI]
50Automated Classification of Benign and Malignant Proliferative Breast Lesions
Evani Radiya-Dixit,David Zhu,Andrew H. Beck
Scientific Reports.2017;7(1)1
[DOI]
51Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Korsuk Sirinukunwattana,Shan E Ahmed Raza,Yee-Wah Tsang,David R. J. Snead,Ian A. Cree,Nasir M. Rajpoot
IEEE Transactions on Medical Imaging.2016;35(5)1196
[DOI]
52Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Philipp Kainz,Michael Pfeiffer,Martin Urschler
PeerJ.2017;5(5)e3874
[DOI]
53Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
PeerJ.2014;9041(5)90410B
[DOI]
54Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Xulei Yang,Zeng Zeng,Su Yi
IET Computer Vision.2017;11(8)643
[DOI]
55Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Rashika Mishra,Ovidiu Daescu,Patrick Leavey,Dinesh Rakheja,Anita Sengupta
IET Computer Vision.2017;10330(8)12
[DOI]
56MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Md Zahangir Alom,Theus Aspiras,Tarek M. Taha,Tj Bowen,Vijayan K. Asari
IEEE Access.2020;8(8)68695
[DOI]
57MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
IEEE Access.2013;8150(8)411
[DOI]
58A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily melanocytic neoplasms
Christopher R. Jackson,Aravindhan Sriharan,Louis J. Vaickus
Modern Pathology.2020;8150(8)411
[DOI]
59MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Meriem Sebai,Xinggang Wang,Tianjiang Wang
Medical & Biological Engineering & Computing.2020;8150(8)411
[DOI]
60MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Michael Nalisnik,David A Gutman,Jun Kong,Lee A D Cooper
Medical & Biological Engineering & Computing.2015;8150(8)928
[DOI]
61MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Angshuman Paul,Anisha Dey,Dipti Prasad Mukherjee,Jayanthi Sivaswamy,Vijaya Tourani
Medical & Biological Engineering & Computing.2015;9350(8)94
[DOI]
62MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Medical & Biological Engineering & Computing.2017;9350(8)133
[DOI]
63MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images
Chen Li,Dan Xue,Zhijie Hu,Hao Chen,Yudong Yao,Yong Zhang,Mo Li,Qian Wang,Ning Xu
Medical & Biological Engineering & Computing.2019;1011(8)222
[DOI]
64Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
Dev Kumar Das,Pabitra Mitra,Chandan Chakraborty,Sanjoy Chatterjee,Asok Kumar Maiti,Surajit Bose
Multidimensional Systems and Signal Processing.2017;28(3)1031
[DOI]
65A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(3)60
[DOI]
66An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
67Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]
Samuel Ortega,Martin Halicek,Himar Fabelo,Gustavo M. Callico,Baowei Fei
Biomedical Optics Express.2020;11(6)3195
[DOI]
68Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie N.C. Shih,John Tomaszewski,Fabio A. González,Anant Madabhushi
Scientific Reports.2017;7(1)3195
[DOI]
69Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Lyndon Chan,Mahdi Hosseini,Corwyn Rowsell,Konstantinos Plataniotis,Savvas Damaskinos
Scientific Reports.2019;7(1)10661
[DOI]
70Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Maximilian Krappmann,Marc Aubreville,Andereas Maier,Christof Bertram,Robert Klopfleisch
Scientific Reports.2018;7(1)245
[DOI]
71Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides Using Convolutional Neural Networks
Samuel Ortega,Martin Halicek,Himar Fabelo,Rafael Camacho,María de la Luz Plaza,Fred Godtliebsen,Gustavo M. Callicó,Baowei Fei
Sensors.2020;20(7)1911
[DOI]
72Automated segmentation of brain cells for clonal analyses in fluorescence microscopy images
Massimo Salvi,Valentina Cerrato,Annalisa Buffo,Filippo Molinari
Journal of Neuroscience Methods.2019;325(7)108348
[DOI]
73Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
74Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Toxicologic Pathology.2017;44(5)821
[DOI]
75Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Y. Yoon,T. Hwang,H. Lee
The Veterinary Journal.2018;237(5)43
[DOI]
76Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks
Shashwat Lal Das,John Keyser,Yoonsuck Choe
The Veterinary Journal.2015;237(5)1
[DOI]
77Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(5)86
[DOI]
78Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Nada A. Aloraidi,Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computers in Biology and Medicine.2014;85(5)3370
[DOI]
79A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model
Kadir Can Burçak,Ömer Kaan Baykan,Harun Uguz
The Journal of Supercomputing.2020;85(5)3370
[DOI]
80Deep learning in mammography and breast histology, an overview and future trends
Azam Hamidinekoo,Erika Denton,Andrik Rampun,Kate Honnor,Reyer Zwiggelaar
Medical Image Analysis.2018;47(5)45
[DOI]
81Artificial intelligence for microscopy: what you should know
Lucas von Chamier,Romain F. Laine,Ricardo Henriques
Biochemical Society Transactions.2019;47(4)1029
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs