Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 157  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
.2017;()281
[DOI]
2Deep learning for automated skeletal bone age assessment in X-ray images
C. Spampinato,S. Palazzo,D. Giordano,M. Aldinucci,R. Leonardi
Medical Image Analysis.2017;36()41
[DOI]
3Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
4Conceptual data sampling for breast cancer histology image classification
Eman Rezk,Zainab Awan,Fahad Islam,Ali Jaoua,Somaya Al Maadeed,Nan Zhang,Gautam Das,Nasir Rajpoot
Computers in Biology and Medicine.2017;89(5)59
[DOI]
5Conceptual data sampling for breast cancer histology image classification
Hao Chen,Xi Wang,Pheng Ann Heng
Computers in Biology and Medicine.2016;89(5)1204
[DOI]
6Conceptual data sampling for breast cancer histology image classification
Dev Kumar Das,Subhranil Koley,Chandan Chakraborty,Asok Kumar Maiti
Computers in Biology and Medicine.2014;89(5)000354
[DOI]
7A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks
K. Sabeena Beevi,Madhu S. Nair,G. R. Bindu
IEEE Journal of Translational Engineering in Health and Medicine.2017;5(5)1
[DOI]
8Integrating Segmentation with Deep Learning for Enhanced Classification of Epithelial and Stromal Tissues in H&E Images
Zahraa Al-Milaji,Ilker Ersoy,Adel Hafiane,Kannappan Palaniappan,Filiz Bunyak
Pattern Recognition Letters.2017;5(5)1
[DOI]
9Integrating Segmentation with Deep Learning for Enhanced Classification of Epithelial and Stromal Tissues in H&E Images
Fattaneh Pourakpour,Hassan Ghassemian
Pattern Recognition Letters.2015;5(5)269
[DOI]
10Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
11Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
12Automated Classification of Benign and Malignant Proliferative Breast Lesions
Evani Radiya-Dixit,David Zhu,Andrew H. Beck
Scientific Reports.2017;7(1)97
[DOI]
13Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Korsuk Sirinukunwattana,Shan E Ahmed Raza,Yee-Wah Tsang,David R. J. Snead,Ian A. Cree,Nasir M. Rajpoot
IEEE Transactions on Medical Imaging.2016;35(5)1196
[DOI]
14Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Xulei Yang,Zeng Zeng,Su Yi
IET Computer Vision.2017;35(5)1196
[DOI]
15Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Rashika Mishra,Ovidiu Daescu,Patrick Leavey,Dinesh Rakheja,Anita Sengupta
IET Computer Vision.2017;10330(5)12
[DOI]
16Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
Michael Nalisnik,David A Gutman,Jun Kong,Lee A D Cooper
IET Computer Vision.2015;10330(5)928
[DOI]
17Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Tao Wan,Wanshu Zhang,Min Zhu,Jianhui Chen,Alin Achim,Zengchang Qin
Neurocomputing.2017;237(5)291
[DOI]
18Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Neurocomputing.2014;237(5)1360
[DOI]
19Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Ashkan Tashk,Mohammad Sadegh Helfroush,Habibollah Danyali,Mojgan Akbarzadeh-jahromi
Applied Mathematical Modelling.2015;39(20)6165
[DOI]
20Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Angshuman Paul,Anisha Dey,Dipti Prasad Mukherjee,Jayanthi Sivaswamy,Vijaya Tourani
Applied Mathematical Modelling.2015;9350(20)94
[DOI]
21Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Applied Mathematical Modelling.2017;9350(20)133
[DOI]
22Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Applied Mathematical Modelling.2017;723(20)839
[DOI]
23Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
Dev Kumar Das,Pabitra Mitra,Chandan Chakraborty,Sanjoy Chatterjee,Asok Kumar Maiti,Surajit Bose
Multidimensional Systems and Signal Processing.2017;28(3)1031
[DOI]
24A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(3)60
[DOI]
25An unsupervised feature learning framework for basal cell carcinoma image analysis
John Arevalo,Angel Cruz-Roa,Viviana Arias,Eduardo Romero,Fabio A. González
Artificial Intelligence in Medicine.2015;64(2)131
[DOI]
26Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie N.C. Shih,John Tomaszewski,Fabio A. González,Anant Madabhushi
Scientific Reports.2017;7(2)46450
[DOI]
27Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
28Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Toxicologic Pathology.2017;44(5)821
[DOI]
29Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Shashwat Lal Das,John Keyser,Yoonsuck Choe
Toxicologic Pathology.2015;44(5)1
[DOI]
30Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(5)86
[DOI]
31Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Nada A. Aloraidi,Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computers in Biology and Medicine.2014;85(5)3370
[DOI]
32Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
Computers in Biology and Medicine.2014;85(5)1279
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs