Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 3093  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1
Hao Chen,Xi Wang,Pheng Ann Heng
.2016;()1204
[DOI]
2Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Microscopy.2019;68(3)216
[DOI]
3DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki
Medical Image Analysis.2018;45(3)121
[DOI]
4Assessment of algorithms for mitosis detection in breast cancer histopathology images
Mitko Veta,Paul J. van Diest,Stefan M. Willems,Haibo Wang,Anant Madabhushi,Angel Cruz-Roa,Fabio Gonzalez,Anders B.L. Larsen,Jacob S. Vestergaard,Anders B. Dahl,Dan C. Ciresan,Jürgen Schmidhuber,Alessandro Giusti,Luca M. Gambardella,F. Boray Tek,Thomas Walter,Ching-Wei Wang,Satoshi Kondo,Bogdan J. Matuszewski,Frederic Precioso,Violet Snell,Josef Kittler,Teofilo E. de Campos,Adnan M. Khan,Nasir M. Rajpoot,Evdokia Arkoumani,Miangela M. Lacle,Max A. Viergever,Josien P.W. Pluim
Medical Image Analysis.2015;20(1)237
[DOI]
5Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images
Gehad Ismail Sayed,Aboul Ella Hassanien
Applied Intelligence.2017;47(2)397
[DOI]
6Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
Stephanie Robertson,Hossein Azizpour,Kevin Smith,Johan Hartman
Translational Research.2018;194(2)19
[DOI]
7A Global Covariance Descriptor for Nuclear Atypia Scoring in Breast Histopathology Images
Adnan Mujahid Khan,Korsuk Sirinukunwattana,Nasir Rajpoot
IEEE Journal of Biomedical and Health Informatics.2015;19(5)1637
[DOI]
8Automatic extraction of cell nuclei from H&E-stained histopathological images
Faliu Yi,Junzhou Huang,Lin Yang,Yang Xie,Guanghua Xiao
Journal of Medical Imaging.2017;4(2)027502
[DOI]
9Weakly supervised mitosis detection in breast histopathology images using concentric loss
Chao Li,Xinggang Wang,Wenyu Liu,Longin Jan Latecki,Bo Wang,Junzhou Huang
Medical Image Analysis.2019;53(2)165
[DOI]
10Automatic segmentation of cell nuclei using Krill Herd optimization based multi-thresholding and Localized Active Contour Model
Sabeena Beevi K.,Madhu S. Nair,G.R. Bindu
Biocybernetics and Biomedical Engineering.2016;36(4)584
[DOI]
11Nuclear spatial and spectral features based evolutionary method for meningioma subtypes classification in histopathology
Kiran Fatima,Hammad Majeed,Humayun Irshad
Microscopy Research and Technique.2017;80(8)851
[DOI]
12Nuclear spatial and spectral features based evolutionary method for meningioma subtypes classification in histopathology
Angshuman Paul,Dipti Prasad Mukherjee
Microscopy Research and Technique.2014;80(8)1
[DOI]
13Cell words: Modelling the visual appearance of cells in histopathology images
Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computerized Medical Imaging and Graphics.2015;42(8)16
[DOI]
14Cell words: Modelling the visual appearance of cells in histopathology images
Alessandro Giusti,Claudio Caccia,Dan C. Ciresari,Jurgen Schmidhuber,Luca M. Gambardella
Computerized Medical Imaging and Graphics.2014;42(8)1360
[DOI]
15Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients
Tao Wan,Wanshu Zhang,Min Zhu,Jianhui Chen,Alin Achim,Zengchang Qin
Neurocomputing.2017;237(8)291
[DOI]
16A convolutional neural network model for semantic segmentation of mitotic events in microscopy images
Saban Öztürk,Bayram Akdemir
Neural Computing and Applications.2019;31(8)3719
[DOI]
17A convolutional neural network model for semantic segmentation of mitotic events in microscopy images
Mateo Puerto,Tania Vargas,Angel Cruz-Roa
Neural Computing and Applications.2016;31(8)1
[DOI]
18A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Elena Casiraghi,Veronica Huber,Marco Frasca,Mara Cossa,Matteo Tozzi,Licia Rivoltini,Biagio Eugenio Leone,Antonello Villa,Barbara Vergani
BMC Bioinformatics.2018;19(S10)1
[DOI]
19A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Humayun Irshad,Alexandre Gouaillard,Ludovic Roux,Daniel Racoceanu
BMC Bioinformatics.2014;19(S10)1279
[DOI]
20A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Mohammed Abdulkareem,MD Samiul Islam,Anas Dheyab Aljoubory,Zhou Nuoya
BMC Bioinformatics.2019;19(S10)84
[DOI]
21An efficient categorization of liver cirrhosis using convolution neural networks for health informatics
R. Suganya,S. Rajaram
Cluster Computing.2019;22(S1)47
[DOI]
22Computational Pathology to Discriminate Benign from Malignant Intraductal Proliferations of the Breast
Fei Dong,Humayun Irshad,Eun-Yeong Oh,Melinda F. Lerwill,Elena F. Brachtel,Nicholas C. Jones,Nicholas W. Knoblauch,Laleh Montaser-Kouhsari,Nicole B. Johnson,Luigi K. F. Rao,Beverly Faulkner-Jones,David C. Wilbur,Stuart J. Schnitt,Andrew H. Beck,Anna Sapino
PLoS ONE.2014;9(12)e114885
[DOI]
23Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Yao Xue,Gilbert Bigras,Judith Hugh,Nilanjan Ray
IEEE Transactions on Medical Imaging.2019;38(11)2632
[DOI]
24Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection
Veena Dodballapur,Yang Song,Heng Huang,Mei Chen,Wojciech Chrzanowski,Weidong Cai
IEEE Transactions on Medical Imaging.2019;38(11)1855
[DOI]
25Efficient deep learning model for mitosis detection using breast histopathology images
Monjoy Saha,Chandan Chakraborty,Daniel Racoceanu
Computerized Medical Imaging and Graphics.2018;64(11)29
[DOI]
26Efficient and robust cell detection: A structured regression approach
Yuanpu Xie,Fuyong Xing,Xiaoshuang Shi,Xiangfei Kong,Hai Su,Lin Yang
Medical Image Analysis.2018;44(11)245
[DOI]
27Efficient and robust cell detection: A structured regression approach
Balamurali Murugesan,Sakthivel Selvaraj,Kaushik Sarveswaran,Keerthi Ram,Jayaraj Joseph,Mohanasankar Sivaprakasam,John E. Tomaszewski,Aaron D. Ward
Medical Image Analysis.2019;44(11)27
[DOI]
28Efficient and robust cell detection: A structured regression approach
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
Medical Image Analysis.2017;44(11)281
[DOI]
29Breast Cancer Histopathology Image Analysis: A Review
Mitko Veta,Josien P. W. Pluim,Paul J. van Diest,Max A. Viergever
IEEE Transactions on Biomedical Engineering.2014;61(5)1400
[DOI]
30Conceptual data sampling for breast cancer histology image classification
Eman Rezk,Zainab Awan,Fahad Islam,Ali Jaoua,Somaya Al Maadeed,Nan Zhang,Gautam Das,Nasir Rajpoot
Computers in Biology and Medicine.2017;89(5)59
[DOI]
31Conceptual data sampling for breast cancer histology image classification
Hao Chen,Qi Dou,Xiaojuan Qi,Jie-Zhi Cheng,Pheng-Ann Heng
Computers in Biology and Medicine.2020;89(5)231
[DOI]
32DCAN: Deep contour-aware networks for object instance segmentation from histology images
Hao Chen,Xiaojuan Qi,Lequan Yu,Qi Dou,Jing Qin,Pheng-Ann Heng
Medical Image Analysis.2017;36(5)135
[DOI]
33DCAN: Deep contour-aware networks for object instance segmentation from histology images
Muneera Alsaedi,Thomas Fevens,Adam Krzyzak,Lukasz Jelen
Medical Image Analysis.2017;36(5)705
[DOI]
34Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology
H. Irshad,A. Gouaillard,L. Roux,D. Racoceanu
Computerized Medical Imaging and Graphics.2014;38(5)390
[DOI]
35Modern convolutional object detectors for nuclei detection on pleural effusion cytology images
Elif Baykal,Hulya Dogan,Mustafa Emre Ercin,Safak Ersoz,Murat Ekinci
Multimedia Tools and Applications.2019;38(5)390
[DOI]
36Mitosis Detection for Invasive Breast Cancer Grading in Histopathological Images
Angshuman Paul,Dipti Prasad Mukherjee
IEEE Transactions on Image Processing.2015;24(11)4041
[DOI]
37Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches
Dev Kumar Das,Pranab Kumar Dutta
Computers in Biology and Medicine.2019;104(11)29
[DOI]
38Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(11)97
[DOI]
39An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;7(11)1
[DOI]
40Intra- and inter-observer agreement in histological assessment of canine soft tissue sarcoma
F. W. Yap,R. Rasotto,S. L. Priestnall,K. J. Parsons,J. Stewart
Veterinary and Comparative Oncology.2017;15(4)1553
[DOI]
41Intra- and inter-observer agreement in histological assessment of canine soft tissue sarcoma
Metin N. Gurcan,Anant Madabhushi,Haibo Wang,Angel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio Gonzalez,Anant Madabhushi
Veterinary and Comparative Oncology.2014;9041(4)90410B
[DOI]
42Intra- and inter-observer agreement in histological assessment of canine soft tissue sarcoma
Hao Chen,Qi Dou,Lequan Yu,Jing Qin,Lei Zhao,Vincent C.T. Mok,Defeng Wang,Lin Shi,Pheng-Ann Heng
Veterinary and Comparative Oncology.2017;9041(4)133
[DOI]
43Synergies between texture features: an abstract feature based framework for meningioma subtypes classification
Hammad Majeed,Kiran Fatima
Pattern Analysis and Applications.2017;20(4)1209
[DOI]
44Synergies between texture features: an abstract feature based framework for meningioma subtypes classification
Dan C. Ciresan,Alessandro Giusti,Luca M. Gambardella,Jürgen Schmidhuber
Pattern Analysis and Applications.2013;8150(4)411
[DOI]
45Synergies between texture features: an abstract feature based framework for meningioma subtypes classification
Boqian Wu,Tasleem Kausar,Qiao Xiao,Mingjiang Wang,Wenfeng Wang,Binwen Fan,Dandan Sun
Pattern Analysis and Applications.2017;723(4)249
[DOI]
46Synergies between texture features: an abstract feature based framework for meningioma subtypes classification
Hanan Hussain,Omar Hujran,K. P Nitha
Pattern Analysis and Applications.2019;723(4)232
[DOI]
47Synergies between texture features: an abstract feature based framework for meningioma subtypes classification
Kaili Cheng,Jiarui Sun,Xuesong Chen,Yanbo Ma,Mengjie Bai,Yong Zhao
Pattern Analysis and Applications.2019;11439(4)453
[DOI]
48Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
Dev Kumar Das,Pabitra Mitra,Chandan Chakraborty,Sanjoy Chatterjee,Asok Kumar Maiti,Surajit Bose
Multidimensional Systems and Signal Processing.2017;28(3)1031
[DOI]
49Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma
S. Kaushik,S. Vijaya Raghavan,B. Sivaselvan
Multidimensional Systems and Signal Processing.2019;1045(3)254
[DOI]
50Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features
Tao Wan,Jiajia Cao,Jianhui Chen,Zengchang Qin
Neurocomputing.2017;229(3)34
[DOI]
51Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features
Sanaz Karimi Jafarbiglo,Habibollah Danyali,Mohammad Sadegh Helfroush
Neurocomputing.2018;229(3)89
[DOI]
52Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie N.C. Shih,John Tomaszewski,Fabio A. González,Anant Madabhushi
Scientific Reports.2017;7(1)89
[DOI]
53Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
Tao Wan,Xu Liu,Jianhui Chen,Zengchang Qin
Scientific Reports.2014;7(1)2290
[DOI]
54Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition
Alison L. Bigley,Stephanie K. Klein,Barry Davies,Leigh Williams,Daniel G. Rudmann
Toxicologic Pathology.2016;44(5)663
[DOI]
55Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Noorul Wahab,Asifullah Khan,Yeon Soo Lee
Computers in Biology and Medicine.2017;85(5)86
[DOI]
56Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
Nada A. Aloraidi,Korsuk Sirinukunwattana,Adnan M. Khan,Nasir M. Rajpoot
Computers in Biology and Medicine.2014;85(5)3370
[DOI]
57Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review
Jia-Mei Chen,Yan Li,Jun Xu,Lei Gong,Lin-Wei Wang,Wen-Lou Liu,Juan Liu
Tumor Biology.2017;39(3)101042831769455
[DOI]
58Computer-Assisted Nuclear Atypia Scoring of Breast Cancer: a Preliminary Study
Ziba Gandomkar,Patrick C. Brennan,Claudia Mello-Thoms
Journal of Digital Imaging.2019;32(5)702
[DOI]
59Computer-Assisted Nuclear Atypia Scoring of Breast Cancer: a Preliminary Study
K Sabeena Beevi,Madhu S. Nair,G. R. Bindu
Journal of Digital Imaging.2016;32(5)2435
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs