Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 1357  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Cytomine: Toward an Open and Collaborative Software Platform for Digital Pathology Bridged to Molecular Investigations
Ulysse Rubens,Renaud Hoyoux,Laurent Vanosmael,Mehdy Ouras,Maxime Tasset,Christopher Hamilton,Rémi Longuespée,Raphaël Marée
PROTEOMICS – Clinical Applications.2019;13(1)1800057
[DOI]
2Robot-Guided Atomic Force Microscopy for Mechano-Visual Phenotyping of Cancer Specimens
Wenjin Chen,Zachary Brandes,Rajarshi Roy,Marina Chekmareva,Hardik J. Pandya,Jaydev P. Desai,David J. Foran
Microscopy and Microanalysis.2015;21(5)1224
[DOI]
3Robot-Guided Atomic Force Microscopy for Mechano-Visual Phenotyping of Cancer Specimens
Andrew J. Schaumberg,S. Joseph Sirintrapun,Hikmat A. Al-Ahmadie,Peter J. Schüffler,Thomas J. Fuchs
Microscopy and Microanalysis.2017;10477(5)42
[DOI]
4Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration
Jun Jiang,Nicholas B. Larson,Naresh Prodduturi,Thomas J. Flotte,Steven N. Hart,Pinaki Sarder
PLOS ONE.2019;14(7)e0220074
[DOI]
5Technical Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper
David A. Clunie,Don K. Dennison,Dawn Cram,Kenneth R. Persons,Mark D. Bronkalla,Henri “Rik” Primo
Journal of Digital Imaging.2016;29(5)583
[DOI]
6Aufbruch in die digitale Neuropathologie
Konrad Kölble,Ingmar Blümcke
Zeitschrift für Epileptologie.2017;30(3)218
[DOI]
7Aufbruch in die digitale Neuropathologie
Bruce A. Beckwith
Zeitschrift für Epileptologie.2016;30(3)87
[DOI]
8Aufbruch in die digitale Neuropathologie
Marc Aubreville,Christof Bertram,Robert Klopfleisch,Andreas Maier
Zeitschrift für Epileptologie.2018;30(3)309
[DOI]
9Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Yoshimasa Kawazoe,Kiminori Shimamoto,Ryohei Yamaguchi,Yukako Shintani-Domoto,Hiroshi Uozaki,Masashi Fukayama,Kazuhiko Ohe
Journal of Imaging.2018;4(7)91
[DOI]
10Image Features Based on Characteristic Curves and Local Binary Patterns for Automated HER2 Scoring
Ramakrishnan Mukundan
Journal of Imaging.2018;4(2)35
[DOI]
11Content-based analysis of Ki-67 stained meningioma specimens for automatic hot-spot selection
Zaneta Swiderska-Chadaj,Tomasz Markiewicz,Bartlomiej Grala,Malgorzata Lorent
Diagnostic Pathology.2016;11(1)35
[DOI]
12A Web-Based Atlas Combining MRI and Histology of the Squirrel Monkey Brain
Kurt G. Schilling,Yurui Gao,Matthew Christian,Vaibhav Janve,Iwona Stepniewska,Bennett A. Landman,Adam W. Anderson
Neuroinformatics.2019;17(1)131
[DOI]
13A Web-Based Atlas Combining MRI and Histology of the Squirrel Monkey Brain
Zaneta Swiderska-Chadaj,Tomasz Markiewicz,Szczepan Cierniak,Robert Koktysz
Neuroinformatics.2016;17(1)1
[DOI]
141399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
Geert Litjens,Peter Bandi,Babak Ehteshami Bejnordi,Oscar Geessink,Maschenka Balkenhol,Peter Bult,Altuna Halilovic,Meyke Hermsen,Rob van de Loo,Rob Vogels,Quirine F Manson,Nikolas Stathonikos,Alexi Baidoshvili,Paul van Diest,Carla Wauters,Marcory van Dijk,Jeroen van der Laak
GigaScience.2018;7(6)1
[DOI]
151399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
Metin N. Gurcan,John E. Tomaszewski,Naiyun Zhou,Xiaxia Yu,Tianhao Zhao,Si Wen,Fusheng Wang,Wei Zhu,Tahsin Kurc,Allen Tannenbaum,Joel Saltz,Yi Gao
GigaScience.2017;10140(6)101400K
[DOI]
161399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
Sébastien Besson,Roger Leigh,Melissa Linkert,Chris Allan,Jean-Marie Burel,Mark Carroll,David Gault,Riad Gozim,Simon Li,Dominik Lindner,Josh Moore,Will Moore,Petr Walczysko,Frances Wong,Jason R. Swedlow
GigaScience.2019;11435(6)3
[DOI]
17Towards machine learned quality control: A benchmark for sharpness quantification in digital pathology
Gabriele Campanella,Arjun R. Rajanna,Lorraine Corsale,Peter J. Schüffler,Yukako Yagi,Thomas J. Fuchs
Computerized Medical Imaging and Graphics.2018;65(6)142
[DOI]
18Retrieve similar cell images in OpenSlide file
Jae Gu Lee,Young Woong Ko
Multimedia Tools and Applications.2019;78(5)5269
[DOI]
19Retrieve similar cell images in OpenSlide file
A. Kallipolitis,I. Maglogiannis
Multimedia Tools and Applications.2018;519(5)374
[DOI]
20An adaptable navigation strategy for Virtual Microscopy from mobile platforms
Germán Corredor,Eduardo Romero,Marcela Iregui
Journal of Biomedical Informatics.2015;54(5)39
[DOI]
21An adaptable navigation strategy for Virtual Microscopy from mobile platforms
Michael Nalisnik,David A Gutman,Jun Kong,Lee A D Cooper
Journal of Biomedical Informatics.2015;54(5)928
[DOI]
22QuPath: Open source software for digital pathology image analysis
Peter Bankhead,Maurice B. Loughrey,José A. Fernández,Yvonne Dombrowski,Darragh G. McArt,Philip D. Dunne,Stephen McQuaid,Ronan T. Gray,Liam J. Murray,Helen G. Coleman,Jacqueline A. James,Manuel Salto-Tellez,Peter W. Hamilton
Scientific Reports.2017;7(1)928
[DOI]
23An integrated iterative annotation technique for easing neural network training in medical image analysis
Brendon Lutnick,Brandon Ginley,Darshana Govind,Sean D. McGarry,Peter S. LaViolette,Rabi Yacoub,Sanjay Jain,John E. Tomaszewski,Kuang-Yu Jen,Pinaki Sarder
Nature Machine Intelligence.2019;1(2)112
[DOI]
24An integrated iterative annotation technique for easing neural network training in medical image analysis
Matthew G. Hanna,Liron Pantanowitz
Nature Machine Intelligence.2019;1(2)524
[DOI]
25A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association
Mark D. Zarella,Douglas Bowman;,Famke Aeffner,Navid Farahani,Albert Xthona;,Syeda Fatima Absar,Anil Parwani,Marilyn Bui,Douglas J. Hartman
Archives of Pathology & Laboratory Medicine.2019;143(2)222
[DOI]
26Identification of “BRAF-Positive” Cases Based on Whole-Slide Image Analysis
Vlad Popovici,Aleš Krenek,Eva Budinská
BioMed Research International.2017;2017(2)1
[DOI]
27Identification of “BRAF-Positive” Cases Based on Whole-Slide Image Analysis
Rene Bidart,Alexander Wong
BioMed Research International.2019;11663(2)369
[DOI]
28Identification of “BRAF-Positive” Cases Based on Whole-Slide Image Analysis
Zaneta Swiderska-Chadaj,Zhaoxuan Ma,Nathan Ing,Tomasz Markiewicz,Malgorzata Lorent,Szczepan Cierniak,Ann E. Walts,Beatrice S. Knudsen,Arkadiusz Gertych
BioMed Research International.2019;1011(2)13
[DOI]
29Image-based surrogate biomarkers for molecular subtypes of colorectal cancer
Vlad Popovici,Eva Budinská,Ladislav Dušek,Michal Kozubek,Fred Bosman,Robert Murphy
Bioinformatics.2017;33(13)2002
[DOI]
30Open access image repositories: high-quality data to enable machine learning research
F. Prior,J. Almeida,P. Kathiravelu,T. Kurc,K. Smith,T.J. Fitzgerald,J. Saltz
Clinical Radiology.2019;33(13)2002
[DOI]
31Embracing an integromic approach to tissue biomarker research in cancer: Perspectives and lessons learned
Gerald Li,Peter Bankhead,Philip D Dunne,Paul G O’Reilly,Jacqueline A James,Manuel Salto-Tellez,Peter W Hamilton,Darragh G McArt
Briefings in Bioinformatics.2016;33(13)bbw044
[DOI]
32Digital Microscopy, Image Analysis, and Virtual Slide Repository
Famke Aeffner,Hibret A Adissu,Michael C Boyle,Robert D Cardiff,Erik Hagendorn,Mark J Hoenerhoff,Robert Klopfleisch,Susan Newbigging,Dirk Schaudien,Oliver Turner,Kristin Wilson
ILAR Journal.2018;59(1)66
[DOI]
33SlideJ: An ImageJ plugin for automated processing of whole slide images
Vincenzo Della Mea,Giulia L. Baroni,David Pilutti,Carla Di Loreto,Helmut Ahammer
PLOS ONE.2017;12(7)e0180540
[DOI]
34SlideJ: An ImageJ plugin for automated processing of whole slide images
Yves Sucaet,Wim Waelput
PLOS ONE.2014;12(7)43
[DOI]
35A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System
Alon Oyler-Yaniv,Jennifer Oyler-Yaniv,Benjamin M. Whitlock,Zhiduo Liu,Ronald N. Germain,Morgan Huse,Grégoire Altan-Bonnet,Oleg Krichevsky
Immunity.2017;46(4)609
[DOI]
36Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
Arkadiusz Gertych,Zaneta Swiderska-Chadaj,Zhaoxuan Ma,Nathan Ing,Tomasz Markiewicz,Szczepan Cierniak,Hootan Salemi,Samuel Guzman,Ann E. Walts,Beatrice S. Knudsen
Scientific Reports.2019;9(1)609
[DOI]
37Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
Zhaoxuan Ma,Jiayun Li,Hootan Salemi,Corey Arnold,Beatrice S. Knudsen,Arkadiusz Gertych,Nathan Ing,Metin N. Gurcan,John E. Tomaszewski
Scientific Reports.2018;9(1)46
[DOI]
38Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
Rashika Mishra,Ovidiu Daescu,Patrick Leavey,Dinesh Rakheja,Anita Sengupta
Scientific Reports.2017;10330(1)12
[DOI]
39Sparse coding of pathology slides compared to transfer learning with deep neural networks
Will Fischer,Sanketh S. Moudgalya,Judith D. Cohn,Nga T. T. Nguyen,Garrett T. Kenyon
BMC Bioinformatics.2018;19(S18)12
[DOI]
40Sparse coding of pathology slides compared to transfer learning with deep neural networks
Sadri Salman,Zhaoxuan Ma,Sambit Mohanty,Sanica Bhele,Yung-Tien Chu,Beatrice Knudsen,Arkadiusz Gertych
BMC Bioinformatics.2014;283(S18)295
[DOI]
41The Emergence of Pathomics
Rajarsi Gupta,Tahsin Kurc,Ashish Sharma,Jonas S. Almeida,Joel Saltz
Current Pathobiology Reports.2019;7(3)73
[DOI]
42A computational method for three-dimensional reconstruction of the microarchitecture of myometrial smooth muscle from histological sections
E. Josiah Lutton,Wim J. E. P. Lammers,Sean James,Hugo A. van den Berg,Andrew M. Blanks,Roger C. Young
PLOS ONE.2017;12(3)e0173404
[DOI]
43OpenTein: a database of digital whole-slide images of stem cell-derived teratomas
Sung-Joon Park,Yusuke Komiyama,Hirofumi Suemori,Akihiro Umezawa,Kenta Nakai
Nucleic Acids Research.2016;44(D1)D1000
[DOI]
44OpenTein: a database of digital whole-slide images of stem cell-derived teratomas
Ramakrishnan Mukundan
Nucleic Acids Research.2017;723(D1)386
[DOI]
45Fixation and Spread of Somatic Mutations in Adult Human Colonic Epithelium
Anna M. Nicholson,Cora Olpe,Alice Hoyle,Ann-Sofie Thorsen,Teja Rus,Mathilde Colombé,Roxanne Brunton-Sim,Richard Kemp,Kate Marks,Phil Quirke,Shalini Malhotra,Rogier ten Hoopen,Ashraf Ibrahim,Cecilia Lindskog,Meagan B. Myers,Barbara Parsons,Simon Tavaré,Mark Wilkinson,Edward Morrissey,Douglas J. Winton
Cell Stem Cell.2018;22(6)909
[DOI]
46Fixation and Spread of Somatic Mutations in Adult Human Colonic Epithelium
Blair J. Rossetti,Fusheng Wang,Pengyue Zhang,George Teodoro,Daniel J. Brat,Jun Kong
Cell Stem Cell.2017;22(6)424
[DOI]
47A whole slide image-based machine learning approach to predict ductal carcinoma in situ (DCIS) recurrence risk
Sergey Klimov,Islam M. Miligy,Arkadiusz Gertych,Yi Jiang,Michael S. Toss,Padmashree Rida,Ian O. Ellis,Andrew Green,Uma Krishnamurti,Emad A. Rakha,Ritu Aneja
Breast Cancer Research.2019;21(1)424
[DOI]
48Automated Histology Analysis: Opportunities for signal processing
Michael T McCann,John A. Ozolek,Carlos A. Castro,Bahram Parvin,Jelena Kovacevic
IEEE Signal Processing Magazine.2015;32(1)78
[DOI]
49DomainBuilder: the knowledge authoring system for SlideTutor Intelligent Tutoring system
Eugene Tseytlin,Faina Linkov,Melissa Castine,Elizabeth Legowski,Rebecca S. Jacobson
F1000Research.2018;7(1)1721
[DOI]
50Enhanced image similarity analysis system in digital pathology
Jae-Gu Lee,Kyung-Chan Choi,Seung-Ho Yeon,Jeong Won Kim,Young-Woong Ko
Multimedia Tools and Applications.2017;76(23)25477
[DOI]
51Effects of glycaemic variability on cardiac remodelling after reperfused myocardial infarction: Evaluation of streptozotocin-induced diabetic Wistar rats using cardiac magnetic resonance imaging
M. Joubert,J. Hardouin,D. Legallois,K. Blanchart,N. Elie,M. Nowoczyn,P. Croisille,L. Coulbault,C. Bor-Angelier,S. Allouche,A. Manrique
Diabetes & Metabolism.2016;42(5)342
[DOI]
52Effects of glycaemic variability on cardiac remodelling after reperfused myocardial infarction: Evaluation of streptozotocin-induced diabetic Wistar rats using cardiac magnetic resonance imaging
Aparna Kanakatte,Rakshith Subramanya,Ashik Delampady,Rajarama Nayak,Balamuralidhar Purushothaman,Jayavardhana Gubbi
Diabetes & Metabolism.2017;42(5)1202
[DOI]
53Customizing Laboratory Information Systems
Peter Gershkovich,John H. Sinard
Advances In Anatomic Pathology.2015;22(5)323
[DOI]
54Pan-cancer analysis of the extent and consequences of intratumor heterogeneity
Noemi Andor,Trevor A Graham,Marnix Jansen,Li C Xia,C Athena Aktipis,Claudia Petritsch,Hanlee P Ji,Carlo C Maley
Nature Medicine.2016;22(1)105
[DOI]
55Machine learning approaches to analyze histological images of tissues from radical prostatectomies
Arkadiusz Gertych,Nathan Ing,Zhaoxuan Ma,Thomas J. Fuchs,Sadri Salman,Sambit Mohanty,Sanica Bhele,Adriana Velásquez-Vacca,Mahul B. Amin,Beatrice S. Knudsen
Computerized Medical Imaging and Graphics.2015;46(1)197
[DOI]
56Personalized Oncology Suite: integrating next-generation sequencing data and whole-slide bioimages
Andreas Dander,Matthias Baldauf,Michael Sperk,Stephan Pabinger,Benjamin Hiltpolt,Zlatko Trajanoski
BMC Bioinformatics.2014;15(1)306
[DOI]
57Personalized Oncology Suite: integrating next-generation sequencing data and whole-slide bioimages
Zaneta Swiderska-Chadaj,Tomasz Markiewicz,Bartlomiej Grala,Malgorzata Lorent,Arkadiusz Gertych
BMC Bioinformatics.2017;723(1)448
[DOI]
58Examination of Independent Prognostic Power of Gene Expressions and Histopathological Imaging Features in Cancer
Tingyan Zhong,Mengyun Wu,Shuangge Ma
Cancers.2019;11(3)361
[DOI]
59Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
Gabriele Campanella,Matthew G. Hanna,Luke Geneslaw,Allen Miraflor,Vitor Werneck Krauss Silva,Klaus J. Busam,Edi Brogi,Victor E. Reuter,David S. Klimstra,Thomas J. Fuchs
Nature Medicine.2019;25(8)1301
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs