Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 388  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Deep Learning in the Biomedical Applications: Recent and Future Status
Ryad Zemouri,Noureddine Zerhouni,Daniel Racoceanu
Applied Sciences.2019;9(8)1526
[DOI]
2Deep Learning in the Biomedical Applications: Recent and Future Status
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Applied Sciences.2017;9(8)821
[DOI]
3Deep Learning in the Biomedical Applications: Recent and Future Status
Sebastian Otálora,Manfredo Atzori,Vincent Andrearczyk,Henning Müller
Applied Sciences.2018;11039(8)148
[DOI]
4Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images
Lingqiao Li,Xipeng Pan,Huihua Yang,Zhenbing Liu,Yubei He,Zhongming Li,Yongxian Fan,Zhiwei Cao,Longhao Zhang
Multimedia Tools and Applications.2018;11039(8)148
[DOI]
5Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images
Eduardo Romero Castro,Germán Corredor,Cheng Lu,Anant Madabhushi,Xiangxue Wang,Vamsidhar Velcheti,Metin N. Gurcan,John E. Tomaszewski
Multimedia Tools and Applications.2018;11039(8)26
[DOI]
6Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Yoshimasa Kawazoe,Kiminori Shimamoto,Ryohei Yamaguchi,Yukako Shintani-Domoto,Hiroshi Uozaki,Masashi Fukayama,Kazuhiko Ohe
Journal of Imaging.2018;4(7)91
[DOI]
7Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists
Yun Liu,Timo Kohlberger,Mohammad Norouzi,George E. Dahl,Jenny L. Smith,Arash Mohtashamian,Niels Olson,Lily H. Peng,Jason D. Hipp,Martin C. Stumpe
Archives of Pathology & Laboratory Medicine.2019;143(7)859
[DOI]
8Blinded Visual Scoring of Images Using the Freely-available Software Blinder
Steven Cothren,Joel Meyer,Jessica Hartman
BIO-PROTOCOL.2018;8(23)859
[DOI]
9Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening
Dev Kumar Das,Subhranil Koley,Surajit Bose,Asok Kumar Maiti,Bhaskar Mitra,Gopeswar Mukherjee,Pranab Kumar Dutta
Applied Soft Computing.2019;83(23)105642
[DOI]
10A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
Jeffrey J. Nirschl,Andrew Janowczyk,Eliot G. Peyster,Renee Frank,Kenneth B. Margulies,Michael D. Feldman,Anant Madabhushi,Alison Marsden
PLOS ONE.2018;13(4)e0192726
[DOI]
11A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
Lipeng Xie,Chunming Li
PLOS ONE.2018;13(4)129
[DOI]
12Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network
Yu Wang,Yating Chen,Ningning Yang,Longfei Zheng,Nilanjan Dey,Amira S. Ashour,V. Rajinikanth,João Manuel R.S. Tavares,Fuqian Shi
Applied Soft Computing.2019;74(4)40
[DOI]
13Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network
Kamal Jnawali,Bhargava Chinni,Vikram Dogra,Navalgund Rao,Horst K. Hahn,Kensaku Mori
Applied Soft Computing.2019;74(4)140
[DOI]
14Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks
Fahime Sheikhzadeh,Rabab K. Ward,Dirk van Niekerk,Martial Guillaud,Christophe Egles
PLOS ONE.2018;13(1)e0190783
[DOI]
15Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours
Nina Linder,Jenny C Taylor,Richard Colling,Robert Pell,Edward Alveyn,Johnson Joseph,Andrew Protheroe,Mikael Lundin,Johan Lundin,Clare Verrill
Journal of Clinical Pathology.2019;72(2)157
[DOI]
16Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours
Chen Wang,Hong Bu,Ji Bao,Chunming Li
Journal of Clinical Pathology.2017;72(2)865
[DOI]
17Segmentation of Glomeruli Within Trichrome Images Using Deep Learning
Shruti Kannan,Laura A. Morgan,Benjamin Liang,McKenzie G. Cheung,Christopher Q. Lin,Dan Mun,Ralph G. Nader,Mostafa E. Belghasem,Joel M. Henderson,Jean M. Francis,Vipul C. Chitalia,Vijaya B. Kolachalama
Kidney International Reports.2019;4(7)955
[DOI]
18Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images
Can Taylan Sari,Cigdem Gunduz-Demir
IEEE Transactions on Medical Imaging.2019;38(5)1139
[DOI]
19Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images
Zaneta Swiderska-Chadaj,Tomasz Markiewicz,Bartlomiej Grala,Malgorzata Lorent,Arkadiusz Gertych
IEEE Transactions on Medical Imaging.2017;723(5)448
[DOI]
20Quaternion Grassmann average network for learning representation of histopathological image
Jun Shi,Xiao Zheng,Jinjie Wu,Bangming Gong,Qi Zhang,Shihui Ying
Pattern Recognition.2019;89(5)67
[DOI]
21Quaternion Grassmann average network for learning representation of histopathological image
Sajid Javed,Muhammad Moazam Fraz,David Epstein,David Snead,Nasir M. Rajpoot
Pattern Recognition.2018;11039(5)120
[DOI]
22Quaternion Grassmann average network for learning representation of histopathological image
Kavya Ravichandran,Nathaniel Braman,Andrew Janowczyk,Anant Madabhushi,Kensaku Mori,Nicholas Petrick
Pattern Recognition.2018;11039(5)11
[DOI]
23Applications of deep learning for the analysis of medical data
Hyun-Jong Jang,Kyung-Ok Cho
Archives of Pharmacal Research.2019;42(6)492
[DOI]
24Advanced Morphologic Analysis for Diagnosing Allograft Rejection
Eliot G. Peyster,Anant Madabhushi,Kenneth B. Margulies
Transplantation.2018;102(8)1230
[DOI]
25Advanced Morphologic Analysis for Diagnosing Allograft Rejection
Nicholas C. Cullen,Brian B. Avants
Transplantation.2018;136(8)13
[DOI]
26Dealing with Lack of Training Data for Convolutional Neural Networks: The Case of Digital Pathology
Francesco Ponzio,Gianvito Urgese,Elisa Ficarra,Santa Di Cataldo
Electronics.2019;8(3)256
[DOI]
27Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
Gabriele Campanella,Matthew G. Hanna,Luke Geneslaw,Allen Miraflor,Vitor Werneck Krauss Silva,Klaus J. Busam,Edi Brogi,Victor E. Reuter,David S. Klimstra,Thomas J. Fuchs
Nature Medicine.2019;25(8)1301
[DOI]
28Performance of an artificial intelligence algorithm for reporting urine cytopathology
Adit B. Sanghvi,Erastus Z. Allen,Keith M. Callenberg,Liron Pantanowitz
Cancer Cytopathology.2019;25(8)1301
[DOI]
29Deep learning nuclei detection: A simple approach can deliver state-of-the-art results
Henning Höfener,André Homeyer,Nick Weiss,Jesper Molin,Claes F. Lundström,Horst K. Hahn
Computerized Medical Imaging and Graphics.2018;70(8)43
[DOI]
30Glomerulus Classification and Detection Based on Convolutional Neural Networks
Jaime Gallego,Anibal Pedraza,Samuel Lopez,Georg Steiner,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Imaging.2018;4(1)20
[DOI]
31An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Alexander D. Kyriazis,Shahriar Noroozizadeh,Amir Refaee,Woongcheol Choi,Lap-Tak Chu,Asma Bashir,Wai Hang Cheng,Rachel Zhao,Dhananjay R. Namjoshi,Septimiu E. Salcudean,Cheryl L. Wellington,Guy Nir
Neuroinformatics.2019;17(3)373
[DOI]
32An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Deniz Sayin Mercadier,Beril Besbinar,Pascal Frossard
Neuroinformatics.2019;17(3)1020
[DOI]
33An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Tuan D. Pham
Neuroinformatics.2017;10262(3)524
[DOI]
34Quantitative chromogenic immunohistochemical image analysis in cellprofiler software
V. Tollemar,N. Tudzarovski,E. Boberg,A. Törnqvist Andrén,A. Al-Adili,K. Le Blanc,K. Garming Legert,M. Bottai,G. Warfvinge,R.V. Sugars
Cytometry Part A.2018;93(10)1051
[DOI]
35Quantitative chromogenic immunohistochemical image analysis in cellprofiler software
Dorota Oszutowska–Mazurek,Oktawian Knap
Cytometry Part A.2017;573(10)466
[DOI]
36Histopathological Image Retrieval Based on Asymmetric Residual Hash and DNA Coding
Shuli Cheng,Liejun Wang,Anyu Du
IEEE Access.2019;573(10)1
[DOI]
37Histopathological Image Retrieval Based on Asymmetric Residual Hash and DNA Coding
Francesco Ponzio,Enrico Macii,Elisa Ficarra,Santa Di Cataldo
IEEE Access.2019;1024(10)114
[DOI]
38Transfer learning for classification of cardiovascular tissues in histological images
Claudia Mazo,Jose Bernal,Maria Trujillo,Enrique Alegre
Computer Methods and Programs in Biomedicine.2018;165(10)69
[DOI]
39Transfer learning for classification of cardiovascular tissues in histological images
Elnaz Mohammadi,Mahdi Orooji
Computer Methods and Programs in Biomedicine.2018;165(10)1
[DOI]
40Gland segmentation in prostate histopathological images
Malay Singh,Emarene Mationg Kalaw,Danilo Medina Giron,Kian-Tai Chong,Chew Lim Tan,Hwee Kuan Lee
Journal of Medical Imaging.2017;4(2)027501
[DOI]
41Supervised Image Classification by Scattering Transform with Application to Weed Detection in Culture Crops of High Density
Pejman Rasti,Ali Ahmad,Salma Samiei,Etienne Belin,David Rousseau
Remote Sensing.2019;11(3)249
[DOI]
42Supervised Image Classification by Scattering Transform with Application to Weed Detection in Culture Crops of High Density
Sébastien Besson,Roger Leigh,Melissa Linkert,Chris Allan,Jean-Marie Burel,Mark Carroll,David Gault,Riad Gozim,Simon Li,Dominik Lindner,Josh Moore,Will Moore,Petr Walczysko,Frances Wong,Jason R. Swedlow
Remote Sensing.2019;11435(3)3
[DOI]
43Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns
Daniel Aitor Holdbrook,Malay Singh,Yukti Choudhury,Emarene Mationg Kalaw,Valerie Koh,Hui Shan Tan,Ravindran Kanesvaran,Puay Hoon Tan,John Yuen Shyi Peng,Min-Han Tan,Hwee Kuan Lee
JCO Clinical Cancer Informatics.2018;11435(2)1
[DOI]
44Environmental properties of cells improve machine learning-based phenotype recognition accuracy
Timea Toth,Tamas Balassa,Norbert Bara,Ferenc Kovacs,Andras Kriston,Csaba Molnar,Lajos Haracska,Farkas Sukosd,Peter Horvath
Scientific Reports.2018;8(1)1
[DOI]
45Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images
Jun Xu,Lei Gong,Guanhao Wang,Cheng Lu,Hannah Gilmore,Shaoting Zhang,Anant Madabhushi
Journal of Medical Imaging.2019;6(01)1
[DOI]
46A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification
Jiaqi Shao,Changwen Qu,Jianwei Li,Shujuan Peng
Sensors.2018;18(9)3039
[DOI]
47A Deep Learning Approach for Breast Invasive Ductal Carcinoma Detection and Lymphoma Multi-Classification in Histological Images
Nadia Brancati,Giuseppe De Pietro,Maria Frucci,Daniel Riccio
IEEE Access.2019;7(9)44709
[DOI]
48Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
Gregory Penzias,Asha Singanamalli,Robin Elliott,Jay Gollamudi,Natalie Shih,Michael Feldman,Phillip D. Stricker,Warick Delprado,Sarita Tiwari,Maret Böhm,Anne-Maree Haynes,Lee Ponsky,Pingfu Fu,Pallavi Tiwari,Satish Viswanath,Anant Madabhushi,Aamir Ahmad
PLOS ONE.2018;13(8)e0200730
[DOI]
49Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
Artem Pimkin,Gleb Makarchuk,Vladimir Kondratenko,Maxim Pisov,Egor Krivov,Mikhail Belyaev
PLOS ONE.2018;10882(8)877
[DOI]
50Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
Matko Saric,Mladen Russo,Maja Stella,Marjan Sikora
PLOS ONE.2019;10882(8)1
[DOI]
51Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks
Xipeng Pan,Dengxian Yang,Lingqiao Li,Zhenbing Liu,Huihua Yang,Zhiwei Cao,Yubei He,Zhen Ma,Yiyi Chen
World Wide Web.2018;21(6)1721
[DOI]
52Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)1721
[DOI]
53Deep learning based tissue analysis predicts outcome in colorectal cancer
Alexander Effland,Michael Hölzel,Teresa Klatzer,Erich Kobler,Jennifer Landsberg,Leonie Neuhäuser,Thomas Pock,Martin Rumpf
Scientific Reports.2018;8(1)334
[DOI]
54Deep learning based tissue analysis predicts outcome in colorectal cancer
Kamal Jnawali,Bhargava Chinni,Vikram Dogra,Saugata Sinha,Navalgund Rao,Nicole V. Ruiter,Brett C. Byram
Scientific Reports.2019;8(1)51
[DOI]
55Automatic Nuclear Segmentation Using Multiscale Radial Line Scanning With Dynamic Programming
Hongming Xu,Cheng Lu,Richard Berendt,Naresh Jha,Mrinal Mandal
IEEE Transactions on Biomedical Engineering.2017;64(10)2475
[DOI]
56Automatic Nuclear Segmentation Using Multiscale Radial Line Scanning With Dynamic Programming
Jiamei Sun,Alexander Binder
IEEE Transactions on Biomedical Engineering.2017;64(10)43
[DOI]
57A new era: artificial intelligence and machine learning in prostate cancer
S. Larry Goldenberg,Guy Nir,Septimiu E. Salcudean
Nature Reviews Urology.2019;16(7)391
[DOI]
58A systematic study of the class imbalance problem in convolutional neural networks
Mateusz Buda,Atsuto Maki,Maciej A. Mazurowski
Neural Networks.2018;106(7)249
[DOI]
59Mitochondrial Organelle Movement Classification (Fission and Fusion) via Convolutional Neural Network Approach
Muhammad Shahid Iqbal,Bin Luo,Rashid Mehmood,Mayda Abdullateef Alrige,Riad Alharbey
IEEE Access.2019;7(7)86570
[DOI]
60Open access image repositories: high-quality data to enable machine learning research
F. Prior,J. Almeida,P. Kathiravelu,T. Kurc,K. Smith,T.J. Fitzgerald,J. Saltz
Clinical Radiology.2019;7(7)86570
[DOI]
61A contemporary review of machine learning in otolaryngology-head and neck surgery
Matthew G. Crowson,Jonathan Ranisau,Antoine Eskander,Aaron Babier,Bin Xu,Russel R. Kahmke,Joseph M. Chen,Timothy C. Y. Chan
The Laryngoscope.2019;7(7)86570
[DOI]
62Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care
Ugljesa Djuric,Gelareh Zadeh,Kenneth Aldape,Phedias Diamandis
npj Precision Oncology.2017;1(1)86570
[DOI]
63Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype
Heather D. Couture,Lindsay A. Williams,Joseph Geradts,Sarah J. Nyante,Ebonee N. Butler,J. S. Marron,Charles M. Perou,Melissa A. Troester,Marc Niethammer
npj Breast Cancer.2018;4(1)86570
[DOI]
64Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine
Kipp W. Johnson,Khader Shameer,Benjamin S. Glicksberg,Ben Readhead,Partho P. Sengupta,Johan L.M. Björkegren,Jason C. Kovacic,Joel T. Dudley
JACC: Basic to Translational Science.2017;2(3)311
[DOI]
65A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Nathan Ing,Fangjin Huang,Andrew Conley,Sungyong You,Zhaoxuan Ma,Sergey Klimov,Chisato Ohe,Xiaopu Yuan,Mahul B. Amin,Robert Figlin,Arkadiusz Gertych,Beatrice S. Knudsen
Scientific Reports.2017;7(1)311
[DOI]
66Intelligence artificielle : quel avenir en anatomie pathologique ?
Ryad Zemouri,Christine Devalland,Séverine Valmary-Degano,Noureddine Zerhouni
Annales de Pathologie.2019;39(2)119
[DOI]
67Intelligence artificielle : quel avenir en anatomie pathologique ?
Bhagirathi Halalli,Aziz Makandar
Annales de Pathologie.2019;1036(2)106
[DOI]
68Intelligence artificielle : quel avenir en anatomie pathologique ?
Xipeng Pan,Lingqiao Li,Huihua Yang,Zhenbing Liu,Yubei He,Zhongming Li,Yongxian Fan,Zhiwei Cao,Longhao Zhang
Annales de Pathologie.2020;810(2)85
[DOI]
69Intelligence artificielle : quel avenir en anatomie pathologique ?
Pablo Guillén-Rondon,Melvin Robinson,Jerry Ebalunode
Annales de Pathologie.2019;979(2)33
[DOI]
70Intelligence artificielle : quel avenir en anatomie pathologique ?
Scotty Kwok
Annales de Pathologie.2018;10882(2)931
[DOI]
71Emergence of “Big Data” and Its Potential and Current Limitations in Medical Imaging
Martin J. Yaffe
Seminars in Nuclear Medicine.2019;49(2)94
[DOI]
72Emergence of “Big Data” and Its Potential and Current Limitations in Medical Imaging
Chonho Lee,Seiya Murata,Kobo Ishigaki,Susumu Date
Seminars in Nuclear Medicine.2017;49(2)181
[DOI]
73Emergence of “Big Data” and Its Potential and Current Limitations in Medical Imaging
Thomas Lampert,Odyssee Merveille,Jessica Schmitz,Germain Forestier,Friedrich Feuerhake,Cedric Wemmert
Seminars in Nuclear Medicine.2019;49(2)905
[DOI]
74Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
Fabian Heinemann,Gerald Birk,Tanja Schoenberger,Birgit Stierstorfer,Robert Hurst
PLOS ONE.2018;13(8)e0202708
[DOI]
75Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
Vaishnavi Subramanian,Benjamin Chidester,Jian Ma,Minh N. Do
PLOS ONE.2018;13(8)805
[DOI]
76Pathology Image Analysis Using Segmentation Deep Learning Algorithms
Shidan Wang,Donghan M. Yang,Ruichen Rong,Xiaowei Zhan,Guanghua Xiao
The American Journal of Pathology.2019;189(9)1686
[DOI]
77The Use of Deep Learning to Predict Stroke Patient Mortality
Songhee Cheon,Jungyoon Kim,Jihye Lim
International Journal of Environmental Research and Public Health.2019;16(11)1876
[DOI]
78Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques
Xiaohong W. Gao,Yu Qian
Molecular Pharmaceutics.2018;15(10)4326
[DOI]
79Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)
Hassaan Majeed,Tan Huu Nguyen,Mikhail Eugene Kandel,Andre Kajdacsy-Balla,Gabriel Popescu
Scientific Reports.2018;8(1)4326
[DOI]
80Applications of machine learning in drug discovery and development
Jessica Vamathevan,Dominic Clark,Paul Czodrowski,Ian Dunham,Edgardo Ferran,George Lee,Bin Li,Anant Madabhushi,Parantu Shah,Michaela Spitzer,Shanrong Zhao
Nature Reviews Drug Discovery.2019;18(6)463
[DOI]
81Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images
Xiangxue Wang,Andrew Janowczyk,Yu Zhou,Rajat Thawani,Pingfu Fu,Kurt Schalper,Vamsidhar Velcheti,Anant Madabhushi
Scientific Reports.2017;7(1)463
[DOI]
82Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images
Angel A. Cruz Roa,Anant Madabhushi,Fabian Cano,Eduardo Romero,Natasha Lepore,Jorge Brieva
Scientific Reports.2018;7(1)39
[DOI]
83Glandular Morphometrics for Objective Grading of Colorectal Adenocarcinoma Histology Images
Ruqayya Awan,Korsuk Sirinukunwattana,David Epstein,Samuel Jefferyes,Uvais Qidwai,Zia Aftab,Imaad Mujeeb,David Snead,Nasir Rajpoot
Scientific Reports.2017;7(1)39
[DOI]
84Cardiac tissue engineering: state-of-the-art methods and outlook
Anh H. Nguyen,Paul Marsh,Lauren Schmiess-Heine,Peter J. Burke,Abraham Lee,Juhyun Lee,Hung Cao
Journal of Biological Engineering.2019;13(1)39
[DOI]
85Digital Microscopy, Image Analysis, and Virtual Slide Repository
Famke Aeffner,Hibret A Adissu,Michael C Boyle,Robert D Cardiff,Erik Hagendorn,Mark J Hoenerhoff,Robert Klopfleisch,Susan Newbigging,Dirk Schaudien,Oliver Turner,Kristin Wilson
ILAR Journal.2018;59(1)66
[DOI]
86Osteoporosis Recognition in Rats under Low-Power Lens Based on Convexity Optimization Feature Fusion
Jie Cai,Wen-guang He,Long Wang,Ke Zhou,Tian-xiu Wu
Scientific Reports.2019;9(1)66
[DOI]
87Osteoporosis Recognition in Rats under Low-Power Lens Based on Convexity Optimization Feature Fusion
Xiaohong W. Gao,Yu Qian,Barjor Gimi,Andrzej Krol
Scientific Reports.2018;9(1)93
[DOI]
88Learning to detect lymphocytes in immunohistochemistry with deep learning
Zaneta Swiderska-Chadaj,Hans Pinckaers,Mart van Rijthoven,Maschenka Balkenhol,Margarita Melnikova,Oscar Geessink,Quirine Manson,Mark Sherman,Antonio Polonia,Jeremy Parry,Mustapha Abubakar,Geert Litjens,Jeroen van der Laak,Francesco Ciompi
Medical Image Analysis.2019;9(1)101547
[DOI]
89MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
Ziba Gandomkar,Patrick C. Brennan,Claudia Mello-Thoms
Artificial Intelligence in Medicine.2018;88(1)14
[DOI]
90MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
Kun Fan,Shibo Wen,Zhuofu Deng
Artificial Intelligence in Medicine.2019;145(1)137
[DOI]
91MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
Adrien Foucart,Olivier Debeir,Christine Decaestecker
Artificial Intelligence in Medicine.2018;145(1)1
[DOI]
92Systems biology primer: the basic methods and approaches
Iman Tavassoly,Joseph Goldfarb,Ravi Iyengar
Essays In Biochemistry.2018;62(4)487
[DOI]
93Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey?
Neil Mehta,Murthy V. Devarakonda
Journal of Allergy and Clinical Immunology.2018;141(6)2019
[DOI]
94Retrieval From and Understanding of Large-Scale Multi-modal Medical Datasets: A Review
Henning Muller,Devrim Unay
IEEE Transactions on Multimedia.2017;19(9)2093
[DOI]
95Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks
Susan Sheehan,Seamus Mawe,Rachel E. Cianciolo,Ron Korstanje,J. Matthew Mahoney
The American Journal of Pathology.2019;189(9)1786
[DOI]
96Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning
F. Klauschen,K.-R. Müller,A. Binder,M. Bockmayr,M. Hägele,P. Seegerer,S. Wienert,G. Pruneri,S. de Maria,S. Badve,S. Michiels,T.O. Nielsen,S. Adams,P. Savas,F. Symmans,S. Willis,T. Gruosso,M. Park,B. Haibe-Kains,B. Gallas,A.M. Thompson,I. Cree,C. Sotiriou,C. Solinas,M. Preusser,S.M. Hewitt,D. Rimm,G. Viale,S. Loi,S. Loibl,R. Salgado,C. Denkert
Seminars in Cancer Biology.2018;52(9)151
[DOI]
97Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
Michel E. Vandenberghe,Marietta L. J. Scott,Paul W. Scorer,Magnus Söderberg,Denis Balcerzak,Craig Barker
Scientific Reports.2017;7(1)151
[DOI]
98Automatic cellularity assessment from post-treated breast surgical specimens
Mohammad Peikari,Sherine Salama,Sharon Nofech-Mozes,Anne L. Martel
Cytometry Part A.2017;91(11)1078
[DOI]
99Automatic cellularity assessment from post-treated breast surgical specimens
Cecília Lantos,Steven M. Kornblau,Amina A. Qutub
Cytometry Part A.2018;91(11)1078
[DOI]
100Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Jia Qu,Nobuyuki Hiruta,Kensuke Terai,Hirokazu Nosato,Masahiro Murakawa,Hidenori Sakanashi
Journal of Healthcare Engineering.2018;2018(11)1
[DOI]
101Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Yusuf H. Roohani,Eric G. Kiss
Journal of Healthcare Engineering.2018;11039(11)3
[DOI]
102Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Zaneta Swiderska-Chadaj,Zhaoxuan Ma,Nathan Ing,Tomasz Markiewicz,Malgorzata Lorent,Szczepan Cierniak,Ann E. Walts,Beatrice S. Knudsen,Arkadiusz Gertych
Journal of Healthcare Engineering.2019;1011(11)13
[DOI]
103Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Aman Rana,Gregory Yauney,Lawrence C. Wong,Otkrist Gupta,Ali Muftu,Pratik Shah
Journal of Healthcare Engineering.2017;1011(11)144
[DOI]
104Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
Vijaya B. Kolachalama,Priyamvada Singh,Christopher Q. Lin,Dan Mun,Mostafa E. Belghasem,Joel M. Henderson,Jean M. Francis,David J. Salant,Vipul C. Chitalia
Kidney International Reports.2018;3(2)464
[DOI]
105COUNTERPOINT: Is ICD-10 Diagnosis Coding Important in the Era of Big Data? No
David M. Liebovitz,John Fahrenbach
Chest.2018;153(5)1095
[DOI]
106COUNTERPOINT: Is ICD-10 Diagnosis Coding Important in the Era of Big Data? No
Rene Bidart,Alexander Wong
Chest.2019;11663(5)369
[DOI]
107COUNTERPOINT: Is ICD-10 Diagnosis Coding Important in the Era of Big Data? No
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Chest.2017;723(5)839
[DOI]
108Advances in the computational and molecular understanding of the prostate cancer cell nucleus
Neil M. Carleton,George Lee,Anant Madabhushi,Robert W. Veltri
Journal of Cellular Biochemistry.2018;119(9)7127
[DOI]
109Machine Learning and Veterinary Pathology: Be Not Afraid!
Krista M. D. La Perle
Veterinary Pathology.2019;56(4)506
[DOI]
110High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi,Fabio González,Yuanquan Wang
PLOS ONE.2018;13(5)e0196828
[DOI]
111Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data
Alexander Effland,Erich Kobler,Anne Brandenburg,Teresa Klatzer,Leonie Neuhäuser,Michael Hölzel,Jennifer Landsberg,Thomas Pock,Martin Rumpf
International Journal of Computer Assisted Radiology and Surgery.2019;14(4)587
[DOI]
112A Nuclei Segmentation Research Based on Convolutional Neural Network
?? ?
Computer Science and Application.2018;08(11)1643
[DOI]
113A Nuclei Segmentation Research Based on Convolutional Neural Network
Erwan Zerhouni,David Lanyi,Matheus Viana,Maria Gabrani
Computer Science and Application.2017;08(11)924
[DOI]
114Role of deep learning in infant brain MRI analysis
Mahmoud Mostapha,Martin Styner
Magnetic Resonance Imaging.2019;08(11)924
[DOI]
115An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;08(11)1
[DOI]
116Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images
Wenyuan Li,Jiayun Li,Karthik V. Sarma,King Chung Ho,Shiwen Shen,Beatrice S. Knudsen,Arkadiusz Gertych,Corey W. Arnold
IEEE Transactions on Medical Imaging.2019;38(4)945
[DOI]
117Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images
Srishti Gautam,Arnav Bhavsar,Anil K. Sao,Harinarayan K.K.,Metin N. Gurcan,John E. Tomaszewski
IEEE Transactions on Medical Imaging.2018;38(4)32
[DOI]
118Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images
Santiago López-Tapia,Cristobal Olivencia,José Aneiros-Fernández,Nicolás Pérez de la Blanca
IEEE Transactions on Medical Imaging.2019;11435(4)144
[DOI]
119Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images
Jun Xu,Chao Zhou,Bing Lang,Qingshan Liu
IEEE Transactions on Medical Imaging.2017;11435(4)73
[DOI]
120Artificial Intelligence in Pathology
Hye Yoon Chang,Chan Kwon Jung,Junwoo Isaac Woo,Sanghun Lee,Joonyoung Cho,Sun Woo Kim,Tae-Yeong Kwak
Journal of Pathology and Translational Medicine.2019;53(1)1
[DOI]
121A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology
Neeraj Kumar,Ruchika Verma,Sanuj Sharma,Surabhi Bhargava,Abhishek Vahadane,Amit Sethi
IEEE Transactions on Medical Imaging.2017;36(7)1550
[DOI]
122A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology
Seiya Murata,Chonho Lee,Chihiro Tanikawa,Susumu Date
IEEE Transactions on Medical Imaging.2017;36(7)1
[DOI]
123A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(7)60
[DOI]
124A Review of Intrinsic Optical Imaging Serial Blockface Histology (ICI-SBH) for Whole Rodent Brain Imaging
Joël Lefebvre,Patrick Delafontaine-Martel,Frédéric Lesage
Photonics.2019;6(2)66
[DOI]
125Deep Learning With Sampling in Colon Cancer Histology
Mary Shapcott,Katherine J. Hewitt,Nasir Rajpoot
Frontiers in Bioengineering and Biotechnology.2019;7(2)66
[DOI]
126Deep Learning With Sampling in Colon Cancer Histology
Nick Weiss,Henning Kost,André Homeyer
Frontiers in Bioengineering and Biotechnology.2018;10882(2)727
[DOI]
127The Job Market Outlook for Residency Graduates: Clear Weather Ahead for the Butterflies?
Ralph Green,Michael A. Hogarth,Michael B. Prystowsky,Hooman H. Rashidi
Archives of Pathology & Laboratory Medicine.2018;142(4)435
[DOI]
128Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal.2018;16(4)34
[DOI]
129Quantitative Characterization of CD8+ T Cell Clustering and Spatial Heterogeneity in Solid Tumors
Chang Gong,Robert A. Anders,Qingfeng Zhu,Janis M. Taube,Benjamin Green,Wenting Cheng,Imke H. Bartelink,Paolo Vicini,Bing Wang,Aleksander S. Popel
Frontiers in Oncology.2019;8(4)34
[DOI]
130Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
Arkadiusz Gertych,Zaneta Swiderska-Chadaj,Zhaoxuan Ma,Nathan Ing,Tomasz Markiewicz,Szczepan Cierniak,Hootan Salemi,Samuel Guzman,Ann E. Walts,Beatrice S. Knudsen
Scientific Reports.2019;9(1)34
[DOI]
131Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
Alison K. Cheeseman,Hamid Tizhoosh,Edward R. Vrscay
Scientific Reports.2019;11663(1)147
[DOI]
132Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Louis J. Vaickus,Arief A. Suriawinata,Jason W. Wei,Xiaoying Liu
Cancer Cytopathology.2019;127(2)98
[DOI]
133Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Alberto Corvo,Marc A. van Driel,Michel A. Westenberg
Cancer Cytopathology.2017;127(2)77
[DOI]
134Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts
Guy Nir,Soheil Hor,Davood Karimi,Ladan Fazli,Brian F. Skinnider,Peyman Tavassoli,Dmitry Turbin,Carlos F. Villamil,Gang Wang,R. Storey Wilson,Kenneth A. Iczkowski,M. Scott Lucia,Peter C. Black,Purang Abolmaesumi,S. Larry Goldenberg,Septimiu E. Salcudean
Medical Image Analysis.2018;50(2)167
[DOI]
135Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts
Sebastian Otalora,Oscar Perdomo,Manfredo Atzori,Mats Andersson,Ludwig Jacobsson,Martin Hedlund,Henning Muller
Medical Image Analysis.2018;50(2)843
[DOI]
136Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts
Ziba Gandomkar,Patrick C. Brennan,Claudia Mello-Thoms,Elizabeth A. Krupinski
Medical Image Analysis.2018;50(2)54
[DOI]
137A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
David Romo-Bucheli,Andrew Janowczyk,Hannah Gilmore,Eduardo Romero,Anant Madabhushi
Cytometry Part A.2017;91(6)566
[DOI]
138Artificial intelligence and its potential in oncology
Vaishali Y. Londhe,Bhavya Bhasin
Drug Discovery Today.2019;24(1)228
[DOI]
139Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape
Michael S. Landau,Liron Pantanowitz
Journal of the American Society of Cytopathology.2019;8(4)230
[DOI]
140Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape
Chen Wang,Ji Bao,Hong Bu
Journal of the American Society of Cytopathology.2017;8(4)2154
[DOI]
141Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software
Andres Moon,Geoffrey H. Smith,Jun Kong,Thomas E. Rogers,Carla L. Ellis,Alton B. “Brad” Farris
Virchows Archiv.2018;472(2)259
[DOI]
142Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software
Hyun Jung,Christian Suloway,Tianyi Miao,Elijah F. Edmondson,David R. Morcock,Claire Deleage,Yanling Liu,Jack R. Collins,Curtis Lisle
Virchows Archiv.2018;472(2)1
[DOI]
143Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software
Vladimir Khryashchev,Anton Lebedev,Olga Stepanova,Anastasiya Srednyakova
Virchows Archiv.2019;199(2)149
[DOI]
144Stacked sparse autoencoder and case-based postprocessing method for nucleus detection
Siqi Li,Huiyan Jiang,Jie Bai,Ye Liu,Yu-dong Yao
Neurocomputing.2019;359(2)494
[DOI]
145Beyond the microscope: interpreting renal biopsy findings in the era of precision medicine
Serena M. Bagnasco
American Journal of Physiology-Renal Physiology.2018;315(6)F1652
[DOI]
146Beyond the microscope: interpreting renal biopsy findings in the era of precision medicine
Francisco Perdigon Romero,An Tang,Samuel Kadoury
American Journal of Physiology-Renal Physiology.2019;315(6)1092
[DOI]
147Machine learning and feature selection for drug response prediction in precision oncology applications
Mehreen Ali,Tero Aittokallio
Biophysical Reviews.2019;11(1)31
[DOI]
148Impact of pre-analytical variables on deep learning accuracy in histopathology
Andrew D Jones,John Paul Graff,Morgan Darrow,Alexander Borowsky,Kristin A Olson,Regina Gandour-Edwards,Ananya Datta Mitra,Dongguang Wei,Guofeng Gao,Blythe Durbin-Johnson,Hooman H Rashidi
Histopathology.2019;11(1)31
[DOI]
149Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology
Kaustav Bera,Kurt A. Schalper,David L. Rimm,Vamsidhar Velcheti,Anant Madabhushi
Nature Reviews Clinical Oncology.2019;11(1)31
[DOI]
150Direct Cellularity Estimation on Breast Cancer Histopathology Images Using Transfer Learning
Ziang Pei,Shuangliang Cao,Lijun Lu,Wufan Chen
Computational and Mathematical Methods in Medicine.2019;2019(1)1
[DOI]
151Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
Jon Whitney,German Corredor,Andrew Janowczyk,Shridar Ganesan,Scott Doyle,John Tomaszewski,Michael Feldman,Hannah Gilmore,Anant Madabhushi
BMC Cancer.2018;18(1)1
[DOI]
152Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
BMC Cancer.2017;18(1)281
[DOI]
153Predicting Infectious Disease Using Deep Learning and Big Data
Sangwon Chae,Sungjun Kwon,Donghyun Lee
International Journal of Environmental Research and Public Health.2018;15(8)1596
[DOI]
154Predicting Infectious Disease Using Deep Learning and Big Data
Matthias Kohl,Christoph Walz,Florian Ludwig,Stefan Braunewell,Maximilian Baust
International Journal of Environmental Research and Public Health.2018;10882(8)903
[DOI]
155Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics
Zhichao Liu,Erika P. Portero,Yiren Jian,Yunjie Zhao,Rosemary M. Onjiko,Chen Zeng,Peter Nemes
Analytical Chemistry.2019;91(9)5768
[DOI]
156Artificial intelligence in radiology
Ahmed Hosny,Chintan Parmar,John Quackenbush,Lawrence H. Schwartz,Hugo J. W. L. Aerts
Nature Reviews Cancer.2018;18(8)500
[DOI]
157Artificial intelligence in radiology
Rucha Tambe,Sarang Mahajan,Urmil Shah,Mohit Agrawal,Bhushan Garware
Nature Reviews Cancer.2019;18(8)143
[DOI]
158Artificial intelligence in radiology
Hui Qu,Gregory Riedlinger,Pengxiang Wu,Qiaoying Huang,Jingru Yi,Subhajyoti De,Dimitris Metaxas
Nature Reviews Cancer.2019;18(8)900
[DOI]
159A deep learning method for classifying mammographic breast density categories
Aly A. Mohamed,Wendie A. Berg,Hong Peng,Yahong Luo,Rachel C. Jankowitz,Shandong Wu
Medical Physics.2018;45(1)314
[DOI]
160Predicting cancer outcomes from histology and genomics using convolutional networks
Pooya Mobadersany,Safoora Yousefi,Mohamed Amgad,David A. Gutman,Jill S. Barnholtz-Sloan,José E. Velázquez Vega,Daniel J. Brat,Lee A. D. Cooper
Proceedings of the National Academy of Sciences.2018;115(13)E2970
[DOI]
161Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)E2970
[DOI]
162Discovering anomalous patterns in large digital pathology images
Sriram Somanchi,Daniel B. Neill,Anil V. Parwani
Statistics in Medicine.2018;37(25)3599
[DOI]
163Training a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features
Germán Corredor,Jon Whitney,Viviana Arias,Anant Madabhushi,Eduardo Romero
Journal of Medical Imaging.2017;4(2)021105
[DOI]
164Fluorescence-based quantification of nucleocytoplasmic transport
Joshua B. Kelley,Bryce M. Paschal
Methods.2019;157(2)106
[DOI]
165Bringing 3D tumor models to the clinic - predictive value for personalized medicine
Kathrin Halfter,Barbara Mayer
Biotechnology Journal.2017;12(2)1600295
[DOI]
166Bringing 3D tumor models to the clinic - predictive value for personalized medicine
Yoshinori Kabeya,Toshiya Iwamori,Sho Yonezawa,Yusuke Takeuchi,Hiroki Nakano,Yuhe Nagisa,Mariko Okubo,Michio Inoue,Reitaro Tokumasu,Issei Ozawa,Atsushi Takano,Ichizo Nishino
Biotechnology Journal.2019;12(2)1850
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs