Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 451  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Computer-Aided Prostate Cancer Diagnosis From Digitized Histopathology: A Review on Texture-Based Systems
Clara Mosquera-Lopez,Sos Agaian,Alejandro Velez-Hoyos,Ian Thompson
IEEE Reviews in Biomedical Engineering.2015;8()98
[DOI]
2Computer-Aided Prostate Cancer Diagnosis From Digitized Histopathology: A Review on Texture-Based Systems
Panagiotis Stanitsas,Anoop Cherian,Anoop Xinyan Li,Alexander Truskinovsky,Vassilios Morellas,Nikolaos Papanikolopoulos
IEEE Reviews in Biomedical Engineering.2016;8()1490
[DOI]
3An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies
Jiayun Li,William Speier,King Chung Ho,Karthik V. Sarma,Arkadiusz Gertych,Beatrice S. Knudsen,Corey W. Arnold
Computerized Medical Imaging and Graphics.2018;69()125
[DOI]
4An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies
Hao Chen,Qi Dou,Xiaojuan Qi,Jie-Zhi Cheng,Pheng-Ann Heng
Computerized Medical Imaging and Graphics.2020;69()231
[DOI]
5An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies
Soheila Gheisari,Daniel R. Catchpoole,Amanda Charlton,Paul J. Kennedy
Computerized Medical Imaging and Graphics.2018;845()57
[DOI]
6A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Elena Casiraghi,Veronica Huber,Marco Frasca,Mara Cossa,Matteo Tozzi,Licia Rivoltini,Biagio Eugenio Leone,Antonello Villa,Barbara Vergani
BMC Bioinformatics.2018;19(S10)57
[DOI]
7A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Wen-Chyi Lin,Ching-Chung Li,Jonathan I. Epstein,Robert W. Veltri
BMC Bioinformatics.2016;19(S10)1
[DOI]
8A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Sara Behjat Jamal,Gokhan Bilgin
BMC Bioinformatics.2019;19(S10)71
[DOI]
9A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections
Syed Fawad Hussain Naqvi,Salahuddin Ayubi,Ammara Nasim,Zeeshan Zafar
BMC Bioinformatics.2020;70(S10)75
[DOI]
10Nuclear spatial and spectral features based evolutionary method for meningioma subtypes classification in histopathology
Kiran Fatima,Hammad Majeed,Humayun Irshad
Microscopy Research and Technique.2017;80(8)851
[DOI]
11Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Korsuk Sirinukunwattana,Shan E Ahmed Raza,Yee-Wah Tsang,David R. J. Snead,Ian A. Cree,Nasir M. Rajpoot
IEEE Transactions on Medical Imaging.2016;35(5)1196
[DOI]
12Fractal Analysis and the Diagnostic Usefulness of Silver Staining Nucleolar Organizer Regions in Prostate Adenocarcinoma
Alex Stepan,Cristiana Simionescu,Daniel Pirici,Raluca Ciurea,Claudiu Margaritescu
Analytical Cellular Pathology.2015;2015(5)1
[DOI]
13Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A ReviewóCurrent Status and Future Potential
Humayun Irshad,Antoine Veillard,Ludovic Roux,Daniel Racoceanu
IEEE Reviews in Biomedical Engineering.2014;7(5)97
[DOI]
14Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A ReviewóCurrent Status and Future Potential
Wen-Chyi Lin,Ching-Chung Li,Jonathan I. Epstein,Robert W. Veltri
IEEE Reviews in Biomedical Engineering.2017;7(5)1
[DOI]
15Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)1
[DOI]
16DCAN: Deep contour-aware networks for object instance segmentation from histology images
Hao Chen,Xiaojuan Qi,Lequan Yu,Qi Dou,Jing Qin,Pheng-Ann Heng
Medical Image Analysis.2017;36(1)135
[DOI]
17DCAN: Deep contour-aware networks for object instance segmentation from histology images
Kien Nguyen,Anindya Sarkar,Anil K. Jain
Medical Image Analysis.2012;7510(1)115
[DOI]
18Nuclei Detection Based on Secant Normal Voting with Skipping Ranges in Stained Histopathological Images
XueTing LIM,Kenjiro SUGIMOTO,Sei-ichiro KAMATA
IEICE Transactions on Information and Systems.2018;E101.D(2)523
[DOI]
19Histopathology: ditch the slides, because digital and 3D are on show
Ilaria Jansen,Marit Lucas,C. Dilara Savci-Heijink,Sybren L. Meijer,Henk A. Marquering,Daniel M. de Bruin,Patricia J. Zondervan
World Journal of Urology.2018;36(4)549
[DOI]
20Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images
Simon Graham,Quoc Dang Vu,Shan E Ahmed Raza,Ayesha Azam,Yee Wah Tsang,Jin Tae Kwak,Nasir Rajpoot
Medical Image Analysis.2019;58(4)101563
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs