Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 582  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Deep Learning in Microscopy Image Analysis: A Survey
Fuyong Xing,Yuanpu Xie,Hai Su,Fujun Liu,Lin Yang
IEEE Transactions on Neural Networks and Learning Systems.2018;29(10)4550
[DOI]
2Applications of machine learning in drug discovery and development
Jessica Vamathevan,Dominic Clark,Paul Czodrowski,Ian Dunham,Edgardo Ferran,George Lee,Bin Li,Anant Madabhushi,Parantu Shah,Michaela Spitzer,Shanrong Zhao
Nature Reviews Drug Discovery.2019;29(10)4550
[DOI]
3Applications of machine learning in drug discovery and development
Yvonne Bachiller,Peter Busch,Manolya Kavakli,Len Hamey
Nature Reviews Drug Discovery.2018;29(10)174
[DOI]
4Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
Andrea Bizzego,Nicole Bussola,Marco Chierici,Valerio Maggio,Margherita Francescatto,Luca Cima,Marco Cristoforetti,Giuseppe Jurman,Cesare Furlanello,Gustavo Rohde
PLOS Computational Biology.2019;15(3)e1006269
[DOI]
5GRAND(ER) ROUNDS: Expanding the universe of topics and speakers in a pathology department seminar series
Edward J. Gutmann
Annals of Diagnostic Pathology.2018;35(3)94
[DOI]
6The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review
Yoichi Hayashi
Frontiers in Robotics and AI.2019;6(3)94
[DOI]
7Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
Jason W. Wei,Laura J. Tafe,Yevgeniy A. Linnik,Louis J. Vaickus,Naofumi Tomita,Saeed Hassanpour
Scientific Reports.2019;9(1)94
[DOI]
8Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Louis J. Vaickus,Arief A. Suriawinata,Jason W. Wei,Xiaoying Liu
Cancer Cytopathology.2019;127(2)98
[DOI]
9Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies
Chaofeng Li,Bingzhong Jing,Liangru Ke,Bin Li,Weixiong Xia,Caisheng He,Chaonan Qian,Chong Zhao,Haiqiang Mai,Mingyuan Chen,Kajia Cao,Haoyuan Mo,Ling Guo,Qiuyan Chen,Linquan Tang,Wenze Qiu,Yahui Yu,Hu Liang,Xinjun Huang,Guoying Liu,Wangzhong Li,Lin Wang,Rui Sun,Xiong Zou,Shanshan Guo,Peiyu Huang,Donghua Luo,Fang Qiu,Yishan Wu,Yijun Hua,Kuiyuan Liu,Shuhui Lv,Jingjing Miao,Yanqun Xiang,Ying Sun,Xiang Guo,Xing Lv
Cancer Communications.2018;38(1)98
[DOI]
10Automation and artificial intelligence in the clinical laboratory
Christopher Naugler,Deirdre L. Church
Critical Reviews in Clinical Laboratory Sciences.2019;56(2)98
[DOI]
11Automation and artificial intelligence in the clinical laboratory
Ruqayya Awan,Navid Alemi Koohbanani,Muhammad Shaban,Anna Lisowska,Nasir Rajpoot
Critical Reviews in Clinical Laboratory Sciences.2018;10882(2)788
[DOI]
12Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)788
[DOI]
13Dealing with Lack of Training Data for Convolutional Neural Networks: The Case of Digital Pathology
Francesco Ponzio,Gianvito Urgese,Elisa Ficarra,Santa Di Cataldo
Electronics.2019;8(3)256
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs