Journal of Pathology Informatics

ORIGINAL ARTICLE
Year
: 2012  |  Volume : 3  |  Issue : 1  |  Page : 24-

Image microarrays derived from tissue microarrays (IMA-TMA): New resource for computer-aided diagnostic algorithm development


Jennifer A Hipp1, Jason D Hipp1, Megan Lim1, Gaurav Sharma1, Lauren B Smith1, Stephen M Hewitt2, Ulysses G. J. Balis1 
1 Department of Pathology, University of Michigan, M4233A Medical Science I, 1301 Catherine Ann Arbor, Michigan 48109-0602, USA
2 Laboratory of Pathology, Advanced Technology Center, National Institutes of Health, National Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA

Correspondence Address:
Ulysses G. J. Balis
Department of Pathology, University of Michigan, M4233A Medical Science I, 1301 Catherine Ann Arbor, Michigan 48109-0602
USA

Background: Conventional tissue microarrays (TMAs) consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD) algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE), and image microarray maker (iMAM) enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA). We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves. Methods: Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ) algorithm. Results: Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM) appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic bodies, was subsequently carried out on the differing TMA-IMAs, with attainment of excellent discriminant classification between the two diagnostic classes. Conclusion: The TMA-IMA construct enables and accelerates high-throughput multicase, multifield based image feature discovery and classification, thus simplifying the development, validation, and comparison of CAD algorithms in settings where the heterogeneity of diagnostic feature morphologic is a significant factor.


How to cite this article:
Hipp JA, Hipp JD, Lim M, Sharma G, Smith LB, Hewitt SM, Balis UG. Image microarrays derived from tissue microarrays (IMA-TMA): New resource for computer-aided diagnostic algorithm development.J Pathol Inform 2012;3:24-24


How to cite this URL:
Hipp JA, Hipp JD, Lim M, Sharma G, Smith LB, Hewitt SM, Balis UG. Image microarrays derived from tissue microarrays (IMA-TMA): New resource for computer-aided diagnostic algorithm development. J Pathol Inform [serial online] 2012 [cited 2019 Sep 19 ];3:24-24
Available from: http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2012;volume=3;issue=1;spage=24;epage=24;aulast=Hipp;type=0