Journal of Pathology Informatics

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 9  |  Issue : 1  |  Page : 41-

Parathyroid frozen section interpretation via desktop telepathology systems: A validation study


Edward Chandraratnam1, Leonardo D Santos2, Shaun Chou3, Jun Dai4, Juan Luo5, Syeda Liza1, Ronald Y Chin6 
1 Department of Anatomical Pathology, Austpath Laboratories, Northmead, New South Wales, Australia
2 Department of Anatomical Pathology, Sydney South West Pathology Service, Liverpool Hospital, Liverpool, New South Wales, Australia
3 Department of Tissue Pathology and Diagnostic Oncology, Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
4 Department of Otolaryngology Head and Neck Surgery, Nepean Hospital, Kingswood, New South Wales, Australia
5 Department of Research and Development, Austpath Laboratories, Northmead, New South Wales, Australia
6 Department of Otolaryngology Head and Neck Surgery, Nepean Hospital, Kingswood; Discipline of Surgery, Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia

Correspondence Address:
Dr. Edward Chandraratnam
Department of Anatomical Pathology, Austpath Laboratories, PO Box 402, Westmead, New South Wales 2145
Australia

Background: Telepathology can potentially be utilized as an alternative to having on-site pathology services for rural and regional hospitals. The goal of the study was to validate two small-footprint desktop telepathology systems for remote parathyroid frozen sections. Subjects and Methods: Three pathologists retrospectively diagnosed 76 parathyroidectomy frozen sections of 52 patients from three pathology services in Australia using the “live-view mode” of MikroScan D2 and Aperio LV1 and in-house direct microscopy. The final paraffin section diagnosis served as the “gold standard” for accuracy evaluation. Concordance rates of the telepathology systems with direct microscopy, inter-pathologist and intra-pathologist agreement, and the time taken to report each slide were analyzed. Results: Both telepathology systems showed high diagnostic accuracy (>99%) and high concordance (>99%) with direct microscopy. High inter-pathologist agreement for telepathology systems was demonstrated by overall kappa values of 0.92 for Aperio LV1 and 0.85 for MikroScan D2. High kappa values (from 0.85 to 1) for intra-pathologist agreement within the three systems were also observed. The time taken per slide by Aperio LV1 and MicroScan D2 within three pathologists was about 3.0 times (P < 0.001, 95% confidence interval [CI]: 2.8–3.2) and 7.7 times (P < 0.001, 95% CI: 7.1–8.3) as long as direct microscopy, respectively, while MikroScan D2 took about 2.6 times as long as Aperio LV1 (P < 0.001, 95% CI: 2.4–2.7). All pathologists evaluated Aperio LV1 as being more user-friendly. Conclusions: Telepathology diagnosis of parathyroidectomy frozen sections through small-footprint desktop systems is accurate, reliable, and comparable with in-house direct microscopy. Telepathology systems take longer than direct microscopy; however, the time taken is within clinically acceptable limits. Aperio LV1 takes shorter time than MikroScan D2 and is more user-friendly.


How to cite this article:
Chandraratnam E, Santos LD, Chou S, Dai J, Luo J, Liza S, Chin RY. Parathyroid frozen section interpretation via desktop telepathology systems: A validation study.J Pathol Inform 2018;9:41-41


How to cite this URL:
Chandraratnam E, Santos LD, Chou S, Dai J, Luo J, Liza S, Chin RY. Parathyroid frozen section interpretation via desktop telepathology systems: A validation study. J Pathol Inform [serial online] 2018 [cited 2018 Dec 15 ];9:41-41
Available from: http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2018;volume=9;issue=1;spage=41;epage=41;aulast=Chandraratnam;type=0