Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 828  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


SYMPOSIUM - ORIGINAL RESEARCH
Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 2

Local isotropic phase symmetry measure for detection of beta cells and lymphocytes


1 The LNM Institute of Information Technology, Jaipur, India
2 School of Life Sciences, University of Warwick, Coventry, United Kingdom
3 Department of Computer Science, University of Warwick, Coventry, United Kingdom

Correspondence Address:
Manohar Kuse
The LNM Institute of Information Technology, Jaipur
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2153-3539.92028

Rights and Permissions

Diabetes can be associated with a reduction in functional β cell mass, which must be restored if the disease is to be cured or progress is to be arrested. To study the cell count, it is also necessary to determine the number of nuclei within the insulin stained area. It can take a single experimentalist several months to complete a single study of this kind, results of which may still be quite subjective. In this paper, we propose a framework based on a novel measure of local symmetry for detection of cells. The local isotropic phase symmetry measure (LIPSyM) is designed to give high values at or near the cell centers. We demonstrate the effectiveness of our algorithm for detection of two types of specific cells in histology images, cells in mouse pancreatic sections and lymphocytes in human breast tissue. Experimental results for these two problems show that our algorithm performs better than human experts for the former problem, and outperforms the best reported results for the latter.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4038    
    Printed170    
    Emailed1    
    PDF Downloaded621    
    Comments [Add]    
    Cited by others 12    

Recommend this journal