Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 865  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


SYMPOSIUM - ORIGINAL RESEARCH
Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 6

Feasibility analysis of high resolution tissue image registration using 3-D synthetic data


1 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
2 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
3 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Department of Electrical and Computer Engineering, Georgia Institute of Technology; Winship Cancer Institute, Emory University; and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA

Correspondence Address:
May D Wang
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Department of Electrical and Computer Engineering, Georgia Institute of Technology; Winship Cancer Institute, Emory University; and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions

Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section) is nearly the size of the objects of interest (~10-20μm cancer cell nucleus), a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI), kernel density estimate (KDE) method [1], and principal component analysis (PCA)) at various slice thicknesses (with increments of 1μm) in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3287    
    Printed130    
    Emailed0    
    PDF Downloaded336    
    Comments [Add]    

Recommend this journal