Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 527  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2013  |  Volume : 4  |  Issue : 2  |  Page : 13

Immunohistochemical analysis of breast tissue microarray images using contextual classifiers

1 School of Computing, University of Dundee, Dundee DD1 4HN, United Kingdom
2 Institute of Biomedical Engineering, Porto, Portugal
3 Department Pathology, Ninewells Hospital, Dundee, United Kingdom
4 Dundee Cancer Centre, Ninewells Hospital, Dundee, United Kingdom

Correspondence Address:
Stephen J McKenna
School of Computing, University of Dundee, Dundee DD1 4HN
United Kingdom
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2153-3539.109871

Rights and Permissions

Background: Tissue microarrays (TMAs) are an important tool in translational research for examining multiple cancers for molecular and protein markers. Automatic immunohistochemical (IHC) scoring of breast TMA images remains a challenging problem. Methods: A two-stage approach that involves localization of regions of invasive and in-situ carcinoma followed by ordinal IHC scoring of nuclei in these regions is proposed. The localization stage classifies locations on a grid as tumor or non-tumor based on local image features. These classifications are then refined using an auto-context algorithm called spin-context. Spin-context uses a series of classifiers to integrate image feature information with spatial context information in the form of estimated class probabilities. This is achieved in a rotationally-invariant manner. The second stage estimates ordinal IHC scores in terms of the strength of staining and the proportion of nuclei stained. These estimates take the form of posterior probabilities, enabling images with uncertain scores to be referred for pathologist review. Results: The method was validated against manual pathologist scoring on two nuclear markers, progesterone receptor (PR) and estrogen receptor (ER). Errors for PR data were consistently lower than those achieved with ER data. Scoring was in terms of estimated proportion of cells that were positively stained (scored on an ordinal scale of 0-6) and perceived strength of staining (scored on an ordinal scale of 0-3). Average absolute differences between predicted scores and pathologist-assigned scores were 0.74 for proportion of cells and 0.35 for strength of staining (PR). Conclusions: The use of context information via spin-context improved the precision and recall of tumor localization. The combination of the spin-context localization method with the automated scoring method resulted in reduced IHC scoring errors.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded552    
    Comments [Add]    
    Cited by others 3    

Recommend this journal