Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 549  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2014  |  Volume : 5  |  Issue : 1  |  Page : 40

A nuclear circularity-based classifier for diagnostic distinction of desmoplastic from spindle cell melanoma in digitized histological images

1 Institute of Pathology, University Ulm, Ulm, Germany
2 Institut für Lasertechnologien in der Medizin und Meßtechnik, University Ulm, Ulm, Germany
3 Institute of Pathology, University Ulm, Ulm, Germany; Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

Correspondence Address:
Jochen K Lennerz
Institute of Pathology, University Ulm, Ulm, Germany

Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2153-3539.143335

Rights and Permissions

Context: Distinction of spindle cell melanoma (SM) and desmoplastic melanoma (DM) is clinically important due to differences in metastatic rate and prognosis; however, histological distinction is not always straightforward. During a routine review of cases, we noted differences in nuclear circularity between SM and DM. Aim: The primary aim in our study was to determine whether these differences in nuclear circularity, when assessed using a basic ImageJ-based threshold extraction, can serve as a diagnostic classifier to distinguish DM from SM. Settings and Design: Our retrospective analysis of an established patient cohort (SM n = 9, DM n = 9) was employed to determine discriminatory power. Subjects and Methods: Regions of interest (total n = 108; 6 images per case) were selected from scanned H and E-stained histological sections, and nuclear circularity was extracted and quantified by computational image analysis using open source tools (plugins for ImageJ). Statistical Analysis: Using analysis of variance, t-tests, and Fisher's exact tests, we compared extracted quantitative shape measures; statistical significance was defined as P < 0.05. Results: Classifying circularity values into four shape categories (spindled, elongated, oval, round) demonstrated significant differences in the spindled and round categories. Paradoxically, DM contained more spindled nuclei than SM (P = 0.011) and SM contained more round nuclei than DM (P = 0.026). Performance assessment using a combined shape-classification of the round and spindled fractions showed 88.9% accuracy and a Youden index of 0.77. Conclusions: Spindle cell melanoma and DM differ significantly in their nuclear morphology with respect to fractions of round and spindled nuclei. Our study demonstrates that quantifying nuclear circularity can be used as an adjunct diagnostic tool for distinction of DM and SM.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded288    
    Comments [Add]    
    Cited by others 10    

Recommend this journal