Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 4274  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2014  |  Volume : 5  |  Issue : 1  |  Page : 8

Histostitcher™: An informatics software platform for reconstructing whole-mount prostate histology using the extensible imaging platform framework

1 Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
2 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
3 Department of Pathology and Anatomical Sciences, University at Buffalo, Suny, Buffalo, NY, USA
4 Department of Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA

Correspondence Address:
Anant Madabhushi
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2153-3539.129441

Rights and Permissions

Context: Co-registration of ex-vivo histologic images with pre-operative imaging (e.g., magnetic resonance imaging [MRI]) can be used to align and map disease extent, and to identify quantitative imaging signatures. However, ex-vivo histology images are frequently sectioned into quarters prior to imaging. Aims: This work presents Histostitcher™, a software system designed to create a pseudo whole mount histology section (WMHS) from a stitching of four individual histology quadrant images. Materials and Methods: Histostitcher™ uses user-identified fiducials on the boundary of two quadrants to stitch such quadrants. An original prototype of Histostitcher™ was designed using the Matlab programming languages. However, clinical use was limited due to slow performance, computer memory constraints and an inefficient workflow. The latest version was created using the extensible imaging platform (XIP™) architecture in the C++ programming language. A fast, graphics processor unit renderer was designed to intelligently cache the visible parts of the histology quadrants and the workflow was significantly improved to allow modifying existing fiducials, fast transformations of the quadrants and saving/loading sessions. Results: The new stitching platform yielded significantly more efficient workflow and reconstruction than the previous prototype. It was tested on a traditional desktop computer, a Windows 8 Surface Pro table device and a 27 inch multi-touch display, with little performance difference between the different devices. Conclusions: Histostitcher™ is a fast, efficient framework for reconstructing pseudo WMHS from individually imaged quadrants. The highly modular XIP™ framework was used to develop an intuitive interface and future work will entail mapping the disease extent from the pseudo WMHS onto pre-operative MRI.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded529    
    Comments [Add]    
    Cited by others 6    

Recommend this journal