Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 133  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 11

Performance of the CellaVision ® DM96 system for detecting red blood cell morphologic abnormalities

1 Department of Pathology and Laboratory Medicine, University of Calgary; Calgary Laboratory Services, Calgary, AB T2L 2K8, Canada
2 Calgary Laboratory Services, Calgary, AB T2L 2K8, Canada

Correspondence Address:
Dr. Christopher L Horn
Department of Pathology and Laboratory Medicine, University of Calgary; Calgary Laboratory Services, Calgary, AB T2L 2K8
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2153-3539.151922

Rights and Permissions

Background: Red blood cell (RBC) analysis is a key feature in the evaluation of hematological disorders. The gold standard light microscopy technique has high sensitivity, but is a relativity time-consuming and labor intensive procedure. This study tested the sensitivity and specificity of gold standard light microscopy manual differential to the CellaVision ® DM96 (CCS; CellaVision, Lund, Sweden) automated image analysis system, which takes digital images of samples at high magnification and compares these images with an artificial neural network based on a database of cells and preclassified according to RBC morphology. Methods: In this study, 212 abnormal peripheral blood smears within the Calgary Laboratory Services network of hospital laboratories were selected and assessed for 15 different RBC morphologic abnormalities by manual microscopy. The same samples were reassessed as a manual addition from the instrument screen using the CellaVision ® DM96 system with 8 microscope high power fields (×100 objective and a 22 mm ocular). The results of the investigation were then used to calculate the sensitivity and specificity of the CellaVision ® DM96 system in reference to light microscopy. Results: The sensitivity ranged from a low of 33% (RBC agglutination) to a high of 100% (sickle cells, stomatocytes). The remainder of the RBC abnormalities tested somewhere between these two extremes. The specificity ranged from 84% (schistocytes) to 99.5% (sickle cells, stomatocytes). Conclusions: Our results showed generally high specificities but variable sensitivities for RBC morphologic abnormalities.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded764    
    Comments [Add]    
    Cited by others 5    

Recommend this journal