Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 301  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 1  |  Page : 43

Next generation quality: Assessing the physician in clinical history completeness and diagnostic interpretations using funnel plots and normalized deviations plots in 3,854 prostate biopsies


1 Department of Pathology, Division of Pathology and Molecular Medicine, St. Joseph's Healthcare Hamilton, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
2 Department of Pathology, Division of Pathology and Molecular Medicine, Juravinski Cancer Centre, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
3 Division of Nephrology, St. Joseph's Healthcare Hamilton, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
4 Division of Urology, Juravinski Cancer Centre, St. Joseph's Healthcare Hamilton, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada

Correspondence Address:
Michael Bonert
Department of Pathology, St. Joseph's Healthcare Hamilton, Room L206, 50 Charlton Avenue East, Hamilton, Ontario, L8N 4A6
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_50_17

Rights and Permissions

Background: Observational data and funnel plots are routinely used outside of pathology to understand trends and improve performance. Objective: Extract diagnostic rate (DR) information from free text surgical pathology reports with synoptic elements and assess whether inter-rater variation and clinical history completeness information useful for continuous quality improvement (CQI) can be obtained. Methods: All in-house prostate biopsies in a 6-year period at two large teaching hospitals were extracted and then diagnostically categorized using string matching, fuzzy string matching, and hierarchical pruning. DRs were then stratified by the submitting physicians and pathologists. Funnel plots were created to assess for diagnostic bias. Results: 3,854 prostate biopsies were found and all could be diagnostically classified. Two audits involving the review of 700 reports and a comparison of the synoptic elements with the free text interpretations suggest a categorization error rate of <1%. Twenty-seven pathologists each read >40 cases and together assessed 3,690 biopsies. There was considerable inter-rater variability and a trend toward more World Health Organization/International Society of Urologic Pathology Grade 1 cancers in older pathologists. Normalized deviations plots, constructed using the median DR, and standard error can elucidate associated over- and under-calls for an individual pathologist in relation to their practice group. Clinical history completeness by submitting medical doctor varied significantly (100% to 22%). Conclusion: Free text data analyses have some limitations; however, they could be used for data-driven CQI in anatomical pathology, and could lead to the next generation in quality of care.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1753    
    Printed34    
    Emailed0    
    PDF Downloaded201    
    Comments [Add]    

Recommend this journal