Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 168  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2018  |  Volume : 9  |  Issue : 1  |  Page : 41

Parathyroid frozen section interpretation via desktop telepathology systems: A validation study

1 Department of Anatomical Pathology, Austpath Laboratories, Northmead, New South Wales, Australia
2 Department of Anatomical Pathology, Sydney South West Pathology Service, Liverpool Hospital, Liverpool, New South Wales, Australia
3 Department of Tissue Pathology and Diagnostic Oncology, Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
4 Department of Otolaryngology Head and Neck Surgery, Nepean Hospital, Kingswood, New South Wales, Australia
5 Department of Research and Development, Austpath Laboratories, Northmead, New South Wales, Australia
6 Department of Otolaryngology Head and Neck Surgery, Nepean Hospital, Kingswood; Discipline of Surgery, Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia

Correspondence Address:
Dr. Edward Chandraratnam
Department of Anatomical Pathology, Austpath Laboratories, PO Box 402, Westmead, New South Wales 2145
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpi.jpi_57_18

Rights and Permissions

Background: Telepathology can potentially be utilized as an alternative to having on-site pathology services for rural and regional hospitals. The goal of the study was to validate two small-footprint desktop telepathology systems for remote parathyroid frozen sections. Subjects and Methods: Three pathologists retrospectively diagnosed 76 parathyroidectomy frozen sections of 52 patients from three pathology services in Australia using the “live-view mode” of MikroScan D2 and Aperio LV1 and in-house direct microscopy. The final paraffin section diagnosis served as the “gold standard” for accuracy evaluation. Concordance rates of the telepathology systems with direct microscopy, inter-pathologist and intra-pathologist agreement, and the time taken to report each slide were analyzed. Results: Both telepathology systems showed high diagnostic accuracy (>99%) and high concordance (>99%) with direct microscopy. High inter-pathologist agreement for telepathology systems was demonstrated by overall kappa values of 0.92 for Aperio LV1 and 0.85 for MikroScan D2. High kappa values (from 0.85 to 1) for intra-pathologist agreement within the three systems were also observed. The time taken per slide by Aperio LV1 and MicroScan D2 within three pathologists was about 3.0 times (P < 0.001, 95% confidence interval [CI]: 2.8–3.2) and 7.7 times (P < 0.001, 95% CI: 7.1–8.3) as long as direct microscopy, respectively, while MikroScan D2 took about 2.6 times as long as Aperio LV1 (P < 0.001, 95% CI: 2.4–2.7). All pathologists evaluated Aperio LV1 as being more user-friendly. Conclusions: Telepathology diagnosis of parathyroidectomy frozen sections through small-footprint desktop systems is accurate, reliable, and comparable with in-house direct microscopy. Telepathology systems take longer than direct microscopy; however, the time taken is within clinically acceptable limits. Aperio LV1 takes shorter time than MikroScan D2 and is more user-friendly.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded303    
    Comments [Add]    
    Cited by others 2    

Recommend this journal