Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 357  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 1  |  Page : 25

Comparative assessment of digital pathology systems for primary diagnosis


Department of Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India

Correspondence Address:
Dr. Rajiv Kumar
Department of Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpi.jpi_94_20

Rights and Permissions

Background: Despite increasing interest in whole-slide imaging (WSI) over optical microscopy (OM), limited information on comparative assessment of various digital pathology systems (DPSs) is available. Materials and Methods: A comprehensive evaluation was undertaken to investigate the technical performance–assessment and diagnostic accuracy of four DPSs with an objective to establish the noninferiority of WSI over OM and find out the best possible DPS for clinical workflow. Results: A total of 2376 digital images, 15,775 image reads (OM - 3171 + WSI - 12,404), and 6100 diagnostic reads (OM - 1245, WSI - 4855) were generated across four DPSs (coded as DPS: 1, 2, 3, and 4) using a total 240 cases (604 slides). Onsite technical evaluation revealed successful scan rate: DPS3 < DPS2 < DPS4 < DPS1; mean scanning time: DPS4 < DPS1 < DPS2 < DPS3; and average storage space: DPS3 < DPS2 < DPS1 < DPS4. Overall diagnostic accuracy, when compared with the reference standard for OM and WSI, was 95.44% (including 2.48% minor and 2.08% major discordances) and 93.32% (including 4.28% minor and 2.4% major discordances), respectively. The difference between the clinically significant discordances by WSI versus OM was 0.32%. Major discordances were observed mostly using DPS4 and least in DPS1; however, the difference was statistically insignificant. Almost perfect (κ ≥ 0.8)/substantial (κ = 0.6–0.8) inter/intra-observer agreement between WSI and OM was observed for all specimen types, except cytology. Overall image quality was best for DPS1 followed by DPS4. Mean digital artifact rate was 6.8% (163/2376 digital images) and maximum artifacts were noted in DPS2 (n = 77) followed by DPS3 (n = 36). Most pathologists preferred viewing software of DPS1 and DPS2. Conclusion: WSI was noninferior to OM for all specimen types, except for cytology. Each DPS has its own pros and cons; however, DPS1 closely emulated the real-world clinical environment. This evaluation is intended to provide a roadmap to pathologists for the selection of the appropriate DPSs while adopting WSI.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1019    
    Printed12    
    Emailed0    
    PDF Downloaded77    
    Comments [Add]    

Recommend this journal