Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 26  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

    Article Cited by others


Performance of the CellaVision ® DM96 system for detecting red blood cell morphologic abnormalities

Horn Christopher L, Mansoor Adnan, Wood Brenda, Nelson Heather, Higa Diane, Lee Lik Hang, Naugler Christopher

Year : 2015| Volume: 6| Issue : 1 | Page no: 11-11

   This article has been cited by
1 Differential diagnosis of thalassemia and iron deficiency anemia using the CellaVision Advanced Red Blood Cell software
Fei Wang, Geng Wang, Zhuo Yang, Xin Wang, Dan Liu, Nanyang Wan, Wei Wu
International Journal of Laboratory Hematology. 2021; 43(4): 853
[Pubmed]  [Google Scholar] [DOI]
2 Performance of the CellaVision DC-1 digital cell imaging analyser for differential counting and morphological classification of blood cells
Lisa N van der Vorm, Henriėt A Hendriks, Simone M Smits
Journal of Clinical Pathology. 2021; : jclinpath-
[Pubmed]  [Google Scholar] [DOI]
3 Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes
Thomas J S Durant, Eben M Olson, Wade L Schulz, Richard Torres
Clinical Chemistry. 2017; 63(12): 1847
[Pubmed]  [Google Scholar] [DOI]
4 Performance of automated digital cell imaging analyzer Sysmex DI-60
Hyeong Nyeon Kim,Mina Hur,Hanah Kim,Seung Wan Kim,Hee-Won Moon,Yeo-Min Yun
Clinical Chemistry and Laboratory Medicine (CCLM). 2017; 56(1)
[Pubmed]  [Google Scholar] [DOI]
5 Assessment of semi-quantitative grading of red blood cell abnormalities utilizing images from the CellaVision DM96 compared to manual light microscopy
M. O. Nakashima,T. J. Doyle,K. Phelan-Lewin,J. M. Summers,J. Bena,E. D. Hsi
International Journal of Laboratory Hematology. 2017;
[Pubmed]  [Google Scholar] [DOI]


Read this article