Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 4085  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


    Article Cited by others

ORIGINAL ARTICLE

Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels

Sornapudi Sudhir, Stanley Ronald Joe, Stoecker William V, Almubarak Haidar, Long Rodney, Antani Sameer, Thoma George, Zuna Rosemary, Frazier Shelliane R

Year : 2018| Volume: 9| Issue : 1 | Page no: 5-5

   This article has been cited by
 
1 Objective evaluation of chondrocyte density & cloning after joint injury using convolutional neural networks
Linjun Yang, James A. Martin, Marc J. Brouillette, Joseph A. Buckwalter, Jessica E. Goetz
Journal of Orthopaedic Research. 2022;
[Pubmed]  [Google Scholar] [DOI]
2 Automated Diagnosis of Cervical Intraepithelial Neoplasia in Histology Images via Deep Learning
Bum-Joo Cho, Jeong-Won Kim, Jungkap Park, Gui-Young Kwon, Mineui Hong, Si-Hyong Jang, Heejin Bang, Gilhyang Kim, Sung-Taek Park
Diagnostics. 2022; 12(2): 548
[Pubmed]  [Google Scholar] [DOI]
3 3E-Net: Entropy-Based Elastic Ensemble of Deep Convolutional Neural Networks for Grading of Invasive Breast Carcinoma Histopathological Microscopic Images
Zakaria Senousy, Mohammed M. Abdelsamea, Mona Mostafa Mohamed, Mohamed Medhat Gaber
Entropy. 2021; 23(5): 620
[Pubmed]  [Google Scholar] [DOI]
4 Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images
Mohammed A. S. Ali, Oleg Misko, Sten-Oliver Salumaa, Mikhail Papkov, Kaupo Palo, Dmytro Fishman, Leopold Parts
SLAS DISCOVERY: Advancing the Science of Drug Discovery. 2021; 26(9): 1125
[Pubmed]  [Google Scholar] [DOI]
5 Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice
Thomas E. Tavolara, M.K.K. Niazi, Adam C. Gower, Melanie Ginese, Gillian Beamer, Metin N. Gurcan
EBioMedicine. 2021; 67: 103388
[Pubmed]  [Google Scholar] [DOI]
6 Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears
Xiaohui Zhu, Xiaoming Li, Kokhaur Ong, Wenli Zhang, Wencai Li, Longjie Li, David Young, Yongjian Su, Bin Shang, Linggan Peng, Wei Xiong, Yunke Liu, Wenting Liao, Jingjing Xu, Feifei Wang, Qing Liao, Shengnan Li, Minmin Liao, Yu Li, Linshang Rao, Jinquan Lin, Jianyuan Shi, Zejun You, Wenlong Zhong, Xinrong Liang, Hao Han, Yan Zhang, Na Tang, Aixia Hu, Hongyi Gao, Zhiqiang Cheng, Li Liang, Weimiao Yu, Yanqing Ding
Nature Communications. 2021; 12(1)
[Pubmed]  [Google Scholar] [DOI]
7 PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer
Farzin Negahbani, Rasool Sabzi, Bita Pakniyat Jahromi, Dena Firouzabadi, Fateme Movahedi, Mahsa Kohandel Shirazi, Shayan Majidi, Amirreza Dehghanian
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
8 Superpixel image segmentation of VISTA expression in colorectal cancer and its relationship to the tumoral microenvironment
Dongling Wu, Sean Hacking, Taisia Vitkovski, Mansoor Nasim
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
9 Marker controlled superpixel nuclei segmentation and automatic counting on immunohistochemistry staining images
Jie Shu, Jingxin Liu, Yongmei Zhang, Hao Fu, Mohammad Ilyas, Giuseppe Faraci, Vincenzo Della Mea, Bozhi Liu, Guoping Qiu, Jonathan Wren
Bioinformatics. 2020; 36(10): 3225
[Pubmed]  [Google Scholar] [DOI]
10 A Comparative Evaluation of Texture Features for Semantic Segmentation of Breast Histopathological Images
R. Rashmi, Keerthana Prasad, Chethana Babu K. Udupa, V. Shwetha
IEEE Access. 2020; 8: 64331
[Pubmed]  [Google Scholar] [DOI]
11 A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks
Xiaomin Zhou, Chen Li, Md Mamunur Rahaman, Yudong Yao, Shiliang Ai, Changhao Sun, Qian Wang, Yong Zhang, Mo Li, Xiaoyan Li, Tao Jiang, Dan Xue, Shouliang Qi, Yueyang Teng
IEEE Access. 2020; 8: 90931
[Pubmed]  [Google Scholar] [DOI]
12 Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non–Small Cell Lung Cancer
Mohammadhadi Khorrami, Prateek Prasanna, Amit Gupta, Pradnya Patil, Priya D. Velu, Rajat Thawani, German Corredor, Mehdi Alilou, Kaustav Bera, Pingfu Fu, Michael Feldman, Vamsidhar Velcheti, Anant Madabhushi
Cancer Immunology Research. 2020; 8(1): 108
[Pubmed]  [Google Scholar] [DOI]
13 Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload
Julianna D. Ianni, Rajath E. Soans, Sivaramakrishnan Sankarapandian, Ramachandra Vikas Chamarthi, Devi Ayyagari, Thomas G. Olsen, Michael J. Bonham, Coleman C. Stavish, Kiran Motaparthi, Clay J. Cockerell, Theresa A. Feeser, Jason B. Lee
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
14 A Novel Approach for Biofilm Detection Based on a Convolutional Neural Network
Giovanni Dimauro, Francesca Deperte, Rosalia Maglietta, Mario Bove, Fabio La Gioia, Vito Renò, Lorenzo Simone, Matteo Gelardi
Electronics. 2020; 9(6): 881
[Pubmed]  [Google Scholar] [DOI]
15 Comparative Analysis of Rhino-Cytological Specimens with Image Analysis and Deep Learning Techniques
Giovanni Dimauro, Vitoantonio Bevilacqua, Pio Fina, Domenico Buongiorno, Antonio Brunetti, Sergio Latrofa, Michele Cassano, Matteo Gelardi
Electronics. 2020; 9(6): 952
[Pubmed]  [Google Scholar] [DOI]
16 A Hybrid Deep Learning and Handcrafted Feature Approach for Cervical Cancer Digital Histology Image Classification
Haidar A AlMubarak, Joe Stanley, Peng Guo, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane Frazier, William Stoecker
International Journal of Healthcare Information Systems and Informatics. 2019; 14(2): 66
[Pubmed]  [Google Scholar] [DOI]
17 Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Louis J. Vaickus, Arief A. Suriawinata, Jason W. Wei, Xiaoying Liu
Cancer Cytopathology. 2019; 127(2): 98
[Pubmed]  [Google Scholar] [DOI]
18 Scalable Simple Linear Iterative Clustering (SSLIC) Using a Generic and Parallel Approach
Bradley Lowekamp, David Chen, Ziv Yaniv, Terry Yoo
The Insight Journal. 2018;
[Pubmed]  [Google Scholar] [DOI]
19 Neutrosophic graph cut-based segmentation scheme for efficient cervical cancer detection
M. Anousouya Devi, J.I. Sheeba, K. Suresh Joseph
Journal of King Saud University - Computer and Information Sciences. 2018;
[Pubmed]  [Google Scholar] [DOI]

 

Read this article