Contact us
|
Home
|
Login
| Users Online: 389
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
3
]
2021
November
[
2
]
September
[
3
]
August
[
1
]
June
[
2
]
January
[
1
]
2020
November
[
3
]
August
[
1
]
July
[
1
]
May
[
1
]
February
[
1
]
2019
December
[
2
]
September
[
1
]
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
April
[
1
]
March
[
1
]
February
[
2
]
2018
December
[
4
]
November
[
1
]
August
[
1
]
July
[
1
]
May
[
1
]
2017
October
[
1
]
September
[
3
]
June
[
1
]
May
[
1
]
March
[
1
]
February
[
1
]
2016
April
[
1
]
March
[
1
]
January
[
2
]
2015
October
[
3
]
September
[
3
]
June
[
4
]
March
[
2
]
January
[
1
]
2014
October
[
2
]
September
[
2
]
August
[
2
]
July
[
1
]
June
[
1
]
May
[
1
]
March
[
1
]
January
[
2
]
2013
December
[
2
]
November
[
1
]
July
[
1
]
June
[
1
]
March
[
2
]
2012
December
[
1
]
September
[
3
]
August
[
1
]
July
[
1
]
April
[
3
]
March
[
1
]
February
[
1
]
2011
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
March
[
2
]
January
[
1
]
2010
October
[
3
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Book Review
|
Brief Report
|
Commentary
|
Editorial
|
Erratum
|
Letter
|
Original Article
|
Research Article
|
Review Article
|
Symposium
|
Technical Note
|
View Point
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Research Article:
A comprehensive study of telecytology using robotic digital microscope and single Z-stack digital scan for fine-needle aspiration-rapid on-site evaluation
Keluo Yao, Rulong Shen, Anil Parwani, Zaibo Li
J Pathol Inform
2018, 9:49 (24 December 2018)
DOI
:10.4103/jpi.jpi_75_18
PMID
:30662795
Background:
The current technology for remote assessment of fine-needle aspiration-rapid on-site evaluation (FNA-ROSE) is limited. Recent advances may provide solutions. This study compared the performance of VisionTek digital microscope (VDM) (Sakura, Japan) and Hamamatsu NanoZoomer C9600-12 single Z-stack digital scan (SZDS) to conventional light microscopy (CLM) for FNA-ROSE.
Methods:
We assembled sixty FNA cases from the thyroid (
n
= 16), lymph node (
n
= 16), pancreas (
n
= 9), head and neck (
n
= 9), salivary gland (
n
= 5), lung (
n
= 4), and rectum (
n
= 1) based on a single institution's routine workflow. One Diff-Quik-stained slide was selected for each case. Two board-certified cytopathologists independently evaluated the cases using VDM, SZDS, and CLM. A “washout” period of at least 14 days was placed between the reviews. The results were categorized into satisfactory versus unsatisfactory for adequacy assessment (AA) and unsatisfactory, benign, atypical, suspicious, and malignant for preliminary diagnosis (PD).
Results:
For AA, the Cohen's kappa statistics (CKS) scores of intermodality agreement (IMA) were 0.74–0.94 (CLM vs. VDM) and 0.86–1 (CLM vs. SZDS). The discordant rates of IMA were 3.3% (4/120) for VDM versus CLM, and 1.7% (2/120) for SZDS versus CLM. For PD, the CKS scores of IMA ranged 0.7–0.93. The overall discordant rates of IMA were 15% (18/120) for CLM versus VDM and 10.8% (13/120) for CLM versus SZDS. The discordant rates of IMA with 2 or higher degrees were 5.8% (7/120) for CLM versus VDM and 1.7% (2/120) for CLM versus SZDS. The average time spent per slide was 270 s for VDM, significantly longer than that for CLM (113 s) or for SZDS (122 s).
Conclusions:
Our data demonstrate that both VDM and SZDS are suitable to provide AA and reasonable PD evaluation. VDM, however, has a significantly longer turnaround time and worse diagnostic performance. The study demonstrates both the potentials and challenges of using VDM and SZDS for FNA-ROSE.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Super-resolution digital pathology image processing of bone marrow aspirate and cytology smears and tissue sections
Amol Singh, Robert S Ohgami
J Pathol Inform
2018, 9:48 (24 December 2018)
DOI
:10.4103/jpi.jpi_56_18
PMID
:30662794
Background:
Accurate digital pathology image analysis depends on high-quality images. As such, it is imperative to obtain digital images with high resolution for downstream data analysis. While hematoxylin and eosin (H&E)-stained tissue section slides from solid tumors contain three-dimensional information, these data have been ignored in digital pathology. In addition, in cytology and bone marrow aspirate smears, the three-dimensional nature of the specimen has precluded efficient analysis of such morphologic data. An individual image snapshot at a single focal distance is often not sufficient for accurate diagnoses and multiple whole-slide images at different focal distances are necessary for diagnostics.
Materials and Methods:
We describe a novel computational pipeline and processing program for obtaining a super-resolved image from multiple static images at different z-planes in overlapping but separate frames. This program, MULTI-Z, performs image alignment, Gaussian smoothing, and Laplacian filtering to construct a final super-resolution image from multiple images.
Results:
We applied this algorithm and program to images of cytology and H&E-stained sections and demonstrated significant improvements in both resolution and image quality by objective data analyses (24% increase in sharpness and focus).
Conclusions:
With the use of our program, super-resolved images of cytology and H&E-stained tissue sections can be obtained to potentially allow for more optimal downstream computational analysis. This method is applicable to whole-slide scanned images.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (1) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Computer-aided laser dissection: A microdissection workflow leveraging image analysis tools
Jason D Hipp, Donald J Johann, Yun Chen, Anant Madabhushi, James Monaco, Jerome Cheng, Jaime Rodriguez-Canales, Martin C Stumpe, Greg Riedlinger, Avi Z Rosenberg, Jeffrey C Hanson, Lakshmi P Kunju, Michael R Emmert-Buck, Ulysses J Balis, Michael A Tangrea
J Pathol Inform
2018, 9:45 (11 December 2018)
DOI
:10.4103/jpi.jpi_60_18
PMID
:30622835
Introduction:
The development and application of new molecular diagnostic assays based on next-generation sequencing and proteomics require improved methodologies for procurement of target cells from histological sections. Laser microdissection can successfully isolate distinct cells from tissue specimens based on visual selection for many research and clinical applications. However, this can be a daunting task when a large number of cells are required for molecular analysis or when a sizeable number of specimens need to be evaluated.
Materials and Methods:
To improve the efficiency of the cellular identification process, we describe a microdissection workflow that leverages recently developed and open source image analysis algorithms referred to as computer-aided laser dissection (CALD). CALD permits a computer algorithm to identify the cells of interest and drive the dissection process.
Results:
We describe several “use cases” that demonstrate the integration of image analytic tools probabilistic pairwise Markov model, ImageJ, spatially invariant vector quantization (SIVQ), and eSeg onto the ThermoFisher Scientific ArcturusXT and Leica LMD7000 microdissection platforms.
Conclusions:
The CALD methodology demonstrates the integration of image analysis tools with the microdissection workflow and shows the potential impact to clinical and life science applications.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (3) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Interactive digital microscopy at the center for a cross-continent undergraduate pathology course in Mozambique
Leonor David, Isabel Martins, Mamudo Rafik Ismail, Fabíola Fernandes, Mohsin Sidat, Mário Seixas, Elsa Fonseca, Carla Carrilho
J Pathol Inform
2018, 9:42 (3 December 2018)
DOI
:10.4103/jpi.jpi_63_18
PMID
:30607309
Background:
Recent medical education trends encourage the use of teaching strategies that emphasize student centeredness and self-learning. In this context, the use of new educative technologies is stimulated at the Faculty of Medicine of Eduardo Mondlane University (FMUEM) in Mozambique. The Faculty of Medicine of University of Porto (FMUP) and FMUEM have a long-lasting record of collaborative work. Within this framework, both institutions embarked in a partnership, aimed to develop a blended learning course of pathology for undergraduates, shared between the two faculties and incorporating interactive digital microscopy as a central learning tool.
Methods:
A core team of faculty members from both institutions identified the existing resources and previous experiences in the two faculties. The Moodle course for students from the University of Porto was the basis to implement the current project. The objective was to develop educational modules of mutual interest, designed for e-learning, followed by a voluntary student's survey conducted in FMUEM to get their perception about the process.
Results:
We selected contents from the pathology curricula of FMUP and FMUEM that were of mutual interest. We next identified and produced new contents for the shared curricula. The implementation involved joint collaboration and training to prepare the new contents, together with building quizzes for self-evaluation. All the practical sessions were based on the use of interactive digital microscopy. The students have reacted enthusiastically to the incorporation of the online component that increased their performance and motivation for pathology learning. For the students in Porto, the major acquisition was the access to slides from infectious diseases as well as autopsy videos.
Conclusions:
Our study indicates that students benefited from high-quality educational contents, with emphasis on digital microscopy, in a platform generated in a win-win situation for FMUP and FMUEM.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (1) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
The use of screencasts with embedded whole-slide scans and hyperlinks to teach anatomic pathology in a supervised digital environment
Mary Wong, Joseph Frye, Stacey Kim, Alberto M Marchevsky
J Pathol Inform
2018, 9:39 (14 November 2018)
DOI
:10.4103/jpi.jpi_44_18
PMID
:30607306
Background:
There is an increasing interest in using digitized whole-slide imaging (WSI) for routine surgical pathology diagnoses. Screencasts are digital recordings of computer screen output with advanced interactive features that allow for the preparation of videos. Screencasts that include hyperlinks to WSIs could help teach pathology residents how to become familiar with technologies that they are likely to use in their future career.
Materials and Methods:
Twenty screencasts were prepared with Camtasia 2.0 software (TechSmith, Okemos, MI, USA). They included clinical history, videos of chest X-rays and/or chest computed tomography images, links to WSI digitized with an Aperio Turbo AT scanner (Leica Biosystems, Buffalo Grove, IL, USA), pre- and posttests, and faculty-narrated videos of the WSI in a manner closely resembling a slide seminar and other educational materials. Screencasts were saved in a hospital network, Screencast.com, YouTube.com, and Vimeo.com. The screencasts were viewed by 12 pathology residents and fellows who made diagnoses, answered the quizzes, and took a survey with questions designed to evaluate their perception of the quality of this technology. Quiz results were automatically e-mailed to faculty. Pre- and posttest results were compared using a paired
t
-test.
Results:
Screencasts can be viewed with Windows PC and Mac operating systems and mobile devices; only videos saved in our network and screencast.com could be used to generate quizzes. Participants' feedback was very favorable with average scores ranging from 4.5 to 4.8 (on a scale of 5). Mean posttest scores (87.0% [±21.6%]) were significantly improved over those in the pretest quizzes (48.5% [±31.2%]) (
P
< 0.0001).
Conclusion:
Screencasts with WSI that allow residents and fellows to diagnose cases using digital microscopy may prove to be a useful technology to enhance the pathology education. Future studies with larger numbers of screencasts and participants are needed to optimize various teaching strategies.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Conventional microscopical versus digital whole-slide imaging-based diagnosis of thin-layer cervical specimens: A validation study
Odille Bongaerts, Carla Clevers, Marij Debets, Daniëlle Paffen, Lisanne Senden, Kim Rijks, Linda Ruiten, Daisy Sie-Go, Paul J van Diest, Marius Nap
J Pathol Inform
2018, 9:29 (27 August 2018)
DOI
:10.4103/jpi.jpi_28_18
PMID
:30197818
Background:
Whole-slide imaging (WSI) has been implemented in many areas of pathology, but primary diagnostics of cytological specimens are lagging behind. One of the objectives of viewing scanned whole-slide images from histological or cytological specimens is remote exchange of knowledge and expertise of professionals to increase diagnostic accuracy. We compared the scoring results of our team obtained in double readings of two different data sets: conventional light microscopy (CLM) versus CLM and CLM versus WSI. We hypothesized that WSI is noninferior to CLM for primary diagnostics of thin-layer cervical slides.
Materials and Methods:
First, we determined the concordance rate at different thresholds of the participating cytotechnicians by double reading with CLM of 500 thin-layer cervical slides (Cohort 1). Next, CLM was compared with WSI examination of another 505 thin-layer cervical slides (Cohort 2) scanned at ×20 in single focus plane. Finally, all major discordant cases of Cohort 1 were evaluated by an external expert in the field of gynecological cytology and of Cohort 2 in the weekly case meetings.
Results:
The overall concordance rate of Cohort 1 (CLM vs. CLM) was 97.8% (95% confidence interval [CI]: 96.0%–98.7%) and of Cohort 2 was 95.3% (95% CI: 93.0%–96.9%).
Conclusion:
Concordance rates of WSI versus CLM were comparable with those of CLM versus CLM. We have made a step forward paving the road to implementation of WSI also in routine diagnostic cytology.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (8) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
A new software platform to improve multidisciplinary tumor board workflows and user satisfaction: A pilot study
Elizabeth A Krupinski, Merce Comas, Leia Garrote Gallego, on behalf of the GISMAR Group
J Pathol Inform
2018, 9:26 (19 July 2018)
DOI
:10.4103/jpi.jpi_16_18
PMID
:30167341
Background:
Workflow and preparation for holding multidisciplinary cancer case reviews (i.e., Tumor Boards) is time-consuming and cumbersome. Use of a software platform might improve this process. This pilot study assessed the impact of a new software platform on tumor board preparation workflow and user satisfaction compared to current methods.
Materials and Methods:
Using current methods and the NAVIFY Tumor Board Solution, this study assessed the number of tasks and time to prepare tumor board cases. Participants completed online surveys assessing ease of use and satisfaction with current and new platforms.
Results:
A total of 41 sessions included two surgeons, two oncologists, two pathologists, and two radiologists preparing tumor board cases with 734 tasks were recorded. Overall, there was no difference in the number of tasks using either preparation method (341 current, 393 NAVIFY Tumor Board solution). There was a significant difference in overall preparation time as a function of specialty (
F
= 71.74,
P
< 0.0001), with oncologists, radiologists, and surgeons having reduced times with NAVIFY Tumor Board solution compared to the current platform and pathologists having equivalent times. There was a significant difference (
F
= 38.98,
P
< 0.0001) for times as a function of task category. Review of clinical course data and other preparation tasks decreased significantly, but pathology and radiology review did not differ significantly. The new platform received higher ratings than the current methods on all survey questions regarding the ease of use and satisfaction.
Conclusions:
The study supported the hypothesis that the new software platform can improve Tumor Board preparation. Further study is needed to assess the impact of this platform in different hospitals, different data storage systems, with different observers, and different types of Tumor board cases as well as its impact on the quality of the tumor board discussion.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (13) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images
Soheila Gheisari, Daniel R Catchpoole, Amanda Charlton, Paul J Kennedy
J Pathol Inform
2018, 9:17 (2 May 2018)
DOI
:10.4103/jpi.jpi_73_17
PMID
:29862127
Background:
Neuroblastoma is the most common extracranial solid tumor in children younger than 5 years old. Optimal management of neuroblastic tumors depends on many factors including histopathological classification. The gold standard for classification of neuroblastoma histological images is visual microscopic assessment. In this study, we propose and evaluate a deep learning approach to classify high-resolution digital images of neuroblastoma histology into five different classes determined by the Shimada classification.
Subjects and Methods:
We apply a combination of convolutional deep belief network (CDBN) with feature encoding algorithm that automatically classifies digital images of neuroblastoma histology into five different classes. We design a three-layer CDBN to extract high-level features from neuroblastoma histological images and combine with a feature encoding model to extract features that are highly discriminative in the classification task. The extracted features are classified into five different classes using a support vector machine classifier.
Data:
We constructed a dataset of 1043 neuroblastoma histological images derived from Aperio scanner from 125 patients representing different classes of neuroblastoma tumors.
Results:
The weighted average F-measure of 86.01% was obtained from the selected high-level features, outperforming state-of-the-art methods.
Conclusion:
The proposed computer-aided classification system, which uses the combination of deep architecture and feature encoding to learn high-level features, is highly effective in the classification of neuroblastoma histological images.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010