Contact us
|
Home
|
Login
| Users Online: 719
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
3
]
2021
December
[
1
]
November
[
3
]
September
[
1
]
May
[
1
]
April
[
3
]
January
[
1
]
2020
December
[
1
]
October
[
1
]
July
[
1
]
2019
April
[
1
]
February
[
1
]
2018
December
[
1
]
September
[
1
]
June
[
1
]
May
[
2
]
April
[
3
]
2017
December
[
1
]
November
[
1
]
October
[
1
]
September
[
1
]
July
[
1
]
June
[
1
]
April
[
2
]
March
[
1
]
February
[
2
]
2016
December
[
1
]
November
[
1
]
October
[
1
]
September
[
2
]
July
[
1
]
May
[
1
]
April
[
1
]
February
[
1
]
January
[
1
]
2015
November
[
2
]
September
[
1
]
August
[
1
]
July
[
2
]
June
[
1
]
March
[
1
]
January
[
2
]
2014
November
[
1
]
September
[
1
]
August
[
1
]
July
[
3
]
March
[
1
]
2013
September
[
1
]
August
[
1
]
January
[
1
]
2012
November
[
1
]
June
[
1
]
April
[
1
]
2011
December
[
1
]
November
[
1
]
October
[
1
]
August
[
1
]
June
[
1
]
May
[
2
]
March
[
1
]
2010
October
[
1
]
May
[
1
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Book Review
|
Brief Report
|
Commentary
|
Editorial
|
Erratum
|
Guidelines
|
Letters
|
Original Article
|
Original Articles
|
Research Article
|
Review Article
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Technical Note:
A novel web application for rapidly searching the diagnostic case archive
Scott Robertson
J Pathol Inform
2020, 11:39 (24 December 2020)
DOI
:10.4103/jpi.jpi_43_20
Academic pathologists must have the ability to search their institution's archive of diagnostic case data. This ability is foundational for research, education, and other academic activities. However, the built-in search functions of commercial laboratory information systems are not always optimized for this activity, leading to delays between an initial search request, and eventual results delivery. To solve this problem, a novel web-based search platform was developed, named Pathtools, which allows our staff and trainees to directly and rapidly search our diagnostic case archive. Pathtools was built with open-source components and features a web-based user-interface. Pathtools uses an SQL database which was populated with anatomic pathology case data going back to 1980, and contains 4.2 million cases (as of July 31, 2020). Pathtools has two major modes of operation, “Preview Mode” and “Research Mode.” Since deployment in February of 2019, Pathtools carried out 33,817 searches in Preview Mode, averaging 0.72 s (standard deviation = 1.7) between search submission, and on-screen display of search results. In Research Mode, Pathtools has also been used to produce data sets for research activity, providing the data used in many abstracts and manuscripts our investigators submitted recently. Interestingly, 75% of search activity is from trainees during their preview time. In a survey of residents and fellows, 83% used Pathtools during the majority of their preview sessions, demonstrating an important role for this resource in trainee education. In conclusion, a web-based search tool can rapidly and securely provide search capability directly to end-users, which has augmented trainee education and research activity in our department.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Technical Note:
(Re) Defining the high-power field for digital pathology
David Kim, Liron Pantanowitz, Peter Schüffler, Dig Vijay Kumar Yarlagadda, Orly Ardon, Victor E Reuter, Meera Hameed, David S Klimstra, Matthew G Hanna
J Pathol Inform
2020, 11:33 (9 October 2020)
DOI
:10.4103/jpi.jpi_48_20
Background:
The microscope high-power field (HPF) is the cornerstone for histopathology diagnostic evaluation such as the quantification of mitotic figures, lymphocytes, and tumor grading. With traditional light microscopy, HPFs are typically evaluated by quantifying histologic events in 10 fields of view at × 400 magnification. In the era of digital pathology, new variables are introduced that may affect HPF evaluation. The aim of this study was to determine the parameters that influence HPF in whole slide images (WSIs).
Materials and Methods:
Glass slides scanned on various devices (Leica's Aperio GT450, AT2, and ScanScope XT; Philips UltraFast Scanner; Hamamatsu's Nanozoomer 2.0HT; and 3DHistech's P1000) were compared to acquired digital slides reviewed on each vendor's respective WSI viewer software (e.g., Aperio ImageScope, ImageScope DX, Philips IMS, 3DHistech CaseViewer, and Hamamatsu NDP.view) and an in-house developed vendor-agnostic viewer. WSIs were reviewed at “×40” equivalent HPF on different sized monitors with varying display resolutions (1900 × 1080–4500 × 3000) and aspect ratios (e.g., Food and Drug Administration [FDA]-cleared 27” Philips PS27QHDCR, FDA-cleared 24” Dell MR2416, 24” Hewlett Packard Z24n G2, and 28” Microsoft Surface Studio). Digital and microscopic HPF areas were calculated and compared.
Results:
A significant variation of HPF area occurred between differing monitor size and display resolutions with minor differences between WSI viewers. No differences were identified by scanner or WSIs scanned at different resolutions (e.g., 0.5, 0.25, 0.24, and 0.12 μm/pixel).
Conclusion:
Glass slide HPF at × 400 magnification with conventional light microscopy was not equivalent to “×40” digital HPF areas. Digital HPF quantification may vary due to differences in the tissue area displayed by monitor sizes, display resolutions, and WSI viewers but not by scanner or scanning resolution. These findings will need to be further clinically validated with potentially new digital metrics for evaluation.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (4) ]
[Sword Plugin for Repository]
Beta
Technical Note:
A point-of-use quality assurance tool for digital pathology remote working
Alexander I Wright, Emily L Clarke, Catriona M Dunn, Bethany J Williams, Darren E Treanor, David S Brettle
J Pathol Inform
2020, 11:17 (16 July 2020)
DOI
:10.4103/jpi.jpi_25_20
Pathology services are facing pressures due to the COVID-19 pandemic. Digital pathology has the capability to meet some of these unprecedented challenges by allowing remote diagnoses to be made at home, during periods of social distancing or self-isolation. However, while digital pathology allows diagnoses to be made on standard computer screens, unregulated home environments may not be conducive for optimal viewing conditions. There is also a paucity of experimental evidence available to support the minimum display requirements for digital pathology. This study presents a Point-of-Use Quality Assurance (POUQA) tool for remote assessment of viewing conditions for reporting digital pathology slides. The tool is a psychophysical test combining previous work from successfully implemented quality assurance tools in both pathology and radiology to provide a minimally intrusive display screen validation task, before viewing digital slides. The test is specific to pathology assessment in that it requires visual discrimination between colors derived from hematoxylin and eosin staining, with a perceptual difference of ±1 delta E (dE). This tool evaluates the transfer of a 1 dE signal through the digital image display chain, including the observers' contrast and color responses within the test color range. The web-based system has been rapidly developed and deployed as a response to the COVID-19 pandemic and may be used by anyone in the world to help optimize flexible working conditions at:
http://www.virtualpathology.leeds.ac.uk/res earch/systems/pouqa/
.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (4) ]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010