Contact us
|
Home
|
Login
| Users Online: 881
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
4
]
2021
December
[
4
]
November
[
1
]
September
[
3
]
August
[
1
]
June
[
2
]
May
[
2
]
April
[
1
]
March
[
1
]
February
[
3
]
January
[
3
]
2020
December
[
1
]
November
[
1
]
October
[
2
]
September
[
1
]
August
[
4
]
July
[
1
]
April
[
1
]
March
[
1
]
February
[
4
]
2019
December
[
2
]
September
[
2
]
July
[
2
]
April
[
1
]
February
[
1
]
2018
December
[
4
]
November
[
1
]
October
[
3
]
September
[
1
]
July
[
1
]
May
[
1
]
April
[
2
]
March
[
1
]
February
[
2
]
2017
December
[
3
]
March
[
3
]
2016
January
[
1
]
2014
September
[
1
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Erratum
|
Original Article
|
Research Article
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Original Article:
Measuring digital pathology throughput and tissue dropouts
George L Mutter, David S Milstone, David H Hwang, Stephanie Siegmund, Alexander Bruce
J Pathol Inform
2022, 13:8 (8 January 2022)
DOI
:10.4103/jpi.jpi_5_21
Background:
Digital pathology operations that precede viewing by a pathologist have a substantial impact on costs and fidelity of the digital image. Scan time and file size determine throughput and storage costs, whereas tissue omission during digital capture (“dropouts”) compromises downstream interpretation. We compared how these variables differ across scanners.
Methods:
A 212 slide set randomly selected from a gynecologic-gestational pathology practice was used to benchmark scan time, file size, and image completeness. Workflows included the Hamamatsu S210 scanner (operated under default and optimized profiles) and the Leica GT450. Digital tissue dropouts were detected by the aligned overlay of macroscopic glass slide camera images (reference) with images created by the slide scanners whole slide images.
Results:
File size and scan time were highly correlated within each platform. Differences in GT450, default S210, and optimized S210 performance were seen in average file size (1.4 vs. 2.5 vs. 3.4 GB) and scan time (93 vs. 376 vs. 721 s). Dropouts were seen in 29.5% (186/631) of successful scans overall: from a low of 13.7% (29/212) for the optimized S210 profile, followed by 34.6% (73/211) for the GT450 and 40.4% (84/208) for the default profile S210 profile. Small dislodged fragments, “shards,” were dropped in 22.2% (140/631) of slides, followed by tissue marginalized at the glass slide edges, 6.2% (39/631). “Unique dropouts,” those for which no equivalent appeared elsewhere in the scan, occurred in only three slides. Of these, 67% (2/3) were “floaters” or contaminants from other cases.
Conclusions:
Scanning speed and resultant file size vary greatly by scanner type, scanner operation settings, and clinical specimen mix (tissue type, tissue area). Digital image fidelity as measured by tissue dropout frequency and dropout type also varies according to the tissue type and scanner. Dropped tissues very rarely (1/631) represent actual specimen tissues that are not represented elsewhere in the scan, so in most cases cannot alter the diagnosis. Digital pathology platforms vary in their output efficiency and image fidelity to the glass original and should be matched to the intended application.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Original Article:
An expandable informatics framework for enhancing central cancer registries with digital pathology specimens, computational imaging tools, and advanced mining capabilities
David J Foran, Eric B Durbin, Wenjin Chen, Evita Sadimin, Ashish Sharma, Imon Banerjee, Tahsin Kurc, Nan Li, Antoinette M Stroup, Gerald Harris, Annie Gu, Maria Schymura, Rajarsi Gupta, Erich Bremer, Joseph Balsamo, Tammy DiPrima, Feiqiao Wang, Shahira Abousamra, Dimitris Samaras, Isaac Hands, Kevin Ward, Joel H Saltz
J Pathol Inform
2022, 13:5 (5 January 2022)
DOI
:10.4103/jpi.jpi_31_21
Background:
Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment, and survival, on every cancer case that is reported across all U.S. states and territories. The goal of our project is to enrich NCI’s Surveillance, Epidemiology, and End Results (SEER) registry data with high-quality population-based biospecimen data in the form of digital pathology, machine-learning-based classifications, and quantitative histopathology imaging feature sets (referred to here as
Pathomics features
).
Materials and Methods:
As part of the project, the underlying informatics infrastructure was designed, tested, and implemented through close collaboration with several participating SEER registries to ensure consistency with registry processes, computational scalability, and ability to support creation of population cohorts that span multiple sites. Utilizing computational imaging algorithms and methods to both generate indices and search for matches makes it possible to reduce inter- and intra-observer inconsistencies and to improve the objectivity with which large image repositories are interrogated.
Results:
Our team has created and continues to expand a well-curated repository of high-quality digitized pathology images corresponding to subjects whose data are routinely collected by the collaborating registries. Our team has systematically deployed and tested key, visual analytic methods to facilitate automated creation of population cohorts for epidemiological studies and tools to support visualization of feature clusters and evaluation of whole-slide images. As part of these efforts, we are developing and optimizing advanced search and matching algorithms to facilitate automated, content-based retrieval of digitized specimens based on their underlying image features and staining characteristics.
Conclusion:
To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to support the expansion and management of a growing repository of high-quality digitized pathology and information-rich, population cohorts containing objective imaging and clinical attributes to facilitate studies that seek to discriminate among different subtypes of disease, stratify patient populations, and perform comparisons of tumor characteristics within and across patient cohorts. We have also successfully developed a suite of tools based on a deep-learning method to perform quantitative characterizations of tumor regions, assess infiltrating lymphocyte distributions, and generate objective nuclear feature measurements. As part of these efforts, our team has implemented reliable methods that enable investigators to systematically search through large repositories to automatically retrieve digitized pathology specimens and correlated clinical data based on their computational signatures.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Original Article:
Comparison of machine-learning algorithms for the prediction of current procedural terminology (CPT) codes from pathology reports
Joshua Levy, Nishitha Vattikonda, Christian Haudenschild, Brock Christensen, Louis Vaickus
J Pathol Inform
2022, 13:3 (5 January 2022)
DOI
:10.4103/jpi.jpi_52_21
Background:
Pathology reports serve as an auditable trial of a patient’s clinical narrative, containing text pertaining to diagnosis, prognosis, and specimen processing. Recent works have utilized natural language processing (NLP) pipelines, which include rule-based or machine-learning analytics, to uncover textual patterns that inform clinical endpoints and biomarker information. Although deep learning methods have come to the forefront of NLP, there have been limited comparisons with the performance of other machine-learning methods in extracting key insights for the prediction of medical procedure information, which is used to inform reimbursement for pathology departments. In addition, the utility of combining and ranking information from multiple report subfields as compared with exclusively using the diagnostic field for the prediction of Current Procedural Terminology (CPT) codes and signing pathologists remains unclear.
Methods:
After preprocessing pathology reports, we utilized advanced topic modeling to identify topics that characterize a cohort of 93,039 pathology reports at the Dartmouth-Hitchcock Department of Pathology and Laboratory Medicine (DPLM). We separately compared XGBoost, SVM, and BERT (Bidirectional Encoder Representation from Transformers) methodologies for the prediction of primary CPT codes (CPT 88302, 88304, 88305, 88307, 88309) as well as 38 ancillary CPT codes, using both the diagnostic text alone and text from all subfields. We performed similar analyses for characterizing text from a group of the 20 pathologists with the most pathology report sign-outs. Finally, we uncovered important report subcomponents by using model explanation techniques.
Results:
We identified 20 topics that pertained to diagnostic and procedural information. Operating on diagnostic text alone, BERT outperformed XGBoost for the prediction of primary CPT codes. When utilizing all report subfields, XGBoost outperformed BERT for the prediction of primary CPT codes. Utilizing additional subfields of the pathology report increased prediction accuracy across ancillary CPT codes, and performance gains for using additional report subfields were high for the XGBoost model for primary CPT codes. Misclassifications of CPT codes were between codes of a similar complexity, and misclassifications between pathologists were subspecialty related.
Conclusions:
Our approach generated CPT code predictions with an accuracy that was higher than previously reported. Although diagnostic text is an important source of information, additional insights may be extracted from other report subfields. Although BERT approaches performed comparably to the XGBoost approaches, they may lend valuable information to pipelines that combine image, text, and -omics information. Future resource-saving opportunities exist to help hospitals detect mis-billing, standardize report text, and estimate productivity metrics that pertain to pathologist compensation (RVUs).
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Original Article:
Creating surveillance data infrastructure using laboratory analytics: Leveraging Visiun and Epic Systems to support COVID-19 pandemic response
Mehrvash Haghighi, Dayanandan Adhimoolam, Ricky Kwan, Melissa Gitman, Maria McGuire, Damodara R Mendu, Adolfo Firpo-Betancourt, Russell B McBride, Carlos Cordon-Cardo, Catherine K Craven
J Pathol Inform
2022, 13:2 (5 January 2022)
DOI
:10.4103/jpi.jpi_54_21
Background:
Pandemics are unpredictable and can rapidly spread. Proper planning and preparation for managing the impact of outbreaks is only achievable through continuous and systematic collection and analysis of health-related data. We describe our experience on how to comply with required reporting and develop a robust platform for surveillance data during an outbreak.
Materials and Methods:
At Mount Sinai Health System, New York City, we applied Visiun, a laboratory analytics dashboard, to support main response activities. Epic System Inc.’s SlicerDicer application was used to develop clinical and research reports. We followed World Health Organization (WHO); federal and state guidelines; departmental policies; and expert consultation to create the framework.
Results:
The developed dashboard integrated data from scattered sources are used to seamlessly distribute reports to key stakeholders. The main report categories included federal, state, laboratory, clinical, and research. The first two groups were created to meet government and state reporting requirements. The laboratory group was the most comprehensive category and included operational reports such as performance metrics, technician performance assessment, and analyzer metrics. The close monitoring of testing volumes and lab operational efficiency was essential to manage increasing demands and provide timely and accurate results. The clinical data reports were valuable for proper managing of medical surge requirements, such as healthcare workforce and medical supplies. The reports included in the research category were highly variable and depended on healthcare setting, research priorities, and available funding. We share a few examples of queries that were included in the designed framework for research projects.
Conclusion:
We reviewed here the key components of a conceptual surveillance framework required for a robust response to COVID-19 pandemics. We demonstrated leveraging a lab analytics dashboard, Visiun, combined with Epic reporting tools to function as a surveillance system. The framework could be used as a generic template for possible future outbreak events.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010