Contact us
|
Home
|
Login
| Users Online: 295
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
March
[
1
]
January
[
10
]
2021
December
[
7
]
November
[
9
]
September
[
8
]
August
[
2
]
July
[
1
]
June
[
4
]
May
[
3
]
April
[
4
]
March
[
7
]
February
[
3
]
January
[
6
]
2020
December
[
2
]
November
[
5
]
October
[
3
]
September
[
2
]
August
[
8
]
July
[
4
]
June
[
2
]
May
[
1
]
April
[
3
]
March
[
3
]
February
[
6
]
January
[
1
]
2019
December
[
6
]
November
[
4
]
September
[
4
]
August
[
3
]
July
[
6
]
June
[
1
]
May
[
2
]
April
[
6
]
March
[
3
]
February
[
4
]
January
[
2
]
2018
December
[
10
]
November
[
4
]
October
[
3
]
September
[
4
]
August
[
1
]
July
[
3
]
June
[
5
]
May
[
4
]
April
[
10
]
March
[
2
]
February
[
4
]
2017
December
[
5
]
November
[
4
]
October
[
3
]
September
[
9
]
July
[
5
]
June
[
2
]
May
[
4
]
April
[
6
]
March
[
6
]
February
[
7
]
2016
December
[
7
]
November
[
5
]
October
[
3
]
September
[
7
]
August
[
1
]
July
[
7
]
May
[
8
]
April
[
7
]
March
[
4
]
February
[
2
]
January
[
5
]
2015
November
[
4
]
October
[
5
]
September
[
5
]
August
[
4
]
July
[
3
]
June
[
19
]
May
[
5
]
April
[
1
]
March
[
5
]
February
[
9
]
January
[
3
]
2014
November
[
2
]
October
[
5
]
September
[
4
]
August
[
6
]
July
[
8
]
June
[
1
]
May
[
3
]
March
[
8
]
February
[
3
]
January
[
4
]
2013
December
[
5
]
November
[
2
]
October
[
4
]
September
[
4
]
August
[
3
]
July
[
3
]
June
[
5
]
May
[
7
]
March
[
18
]
February
[
1
]
January
[
1
]
2012
December
[
6
]
November
[
1
]
October
[
4
]
September
[
4
]
August
[
7
]
July
[
2
]
June
[
1
]
May
[
2
]
April
[
7
]
March
[
6
]
February
[
7
]
January
[
13
]
2011
December
[
3
]
November
[
1
]
October
[
7
]
August
[
9
]
July
[
3
]
June
[
7
]
May
[
3
]
March
[
6
]
February
[
8
]
January
[
6
]
2010
December
[
4
]
November
[
1
]
October
[
6
]
September
[
1
]
August
[
6
]
July
[
6
]
May
[
5
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstract
|
Book Review
|
Commentary
|
Editorial
|
Letters
|
Original Articles
|
Research Article
|
Review Articles
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Book Review:
Review of methods in medical informatics: Fundamentals of healthcare programming in Perl, Python and Ruby by Jules J. Berman
Alexis B Carter
J Pathol Inform
2011, 2:49 (29 October 2011)
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Technical note:
Standardization of whole slide image morphologic assessment with definition of a new application: Digital slide dynamic morphometry
Giacomo Puppa, Mauro Risio, Kieran Sheahan, Michael Vieth, Inti Zlobec, Alessandro Lugli, Sara Pecori, Lai Mun Wang, Cord Langner, Hiroyuki Mitomi, Takatoshi Nakamura, Masahiko Watanabe, Hideki Ueno, Jacques Chasle, Carlo Senore, Stephen A Conley, Paulette Herlin, Gregory Y Lauwers
J Pathol Inform
2011, 2:48 (29 October 2011)
DOI
:10.4103/2153-3539.86830
PMID
:22200031
Background:
In histopathology, the quantitative assessment of various morphologic features is based on methods originally conceived on specific areas observed through the microscope used. Failure to reproduce the same reference field of view using a different microscope will change the score assessed. Visualization of a digital slide on a screen through a dedicated viewer allows selection of the magnification. However, the field of view is rectangular, unlike the circular field of optical microscopy. In addition, the size of the selected area is not evident, and must be calculated.
Materials and Methods:
A digital slide morphometric system was conceived to reproduce the various methods published for assessing tumor budding in colorectal cancer. Eighteen international experts in colorectal cancer were invited to participate in a web-based study by assessing tumor budding with five different methods in 100 digital slides.
Results:
The specific areas to be tested by each method were marked by colored circles. The areas were grouped in a target-like pattern and then saved as an .xml file. When a digital slide was opened, the .xml file was imported in order to perform the measurements. Since the morphometric tool is composed of layers that can be freely moved on top of the digital slide, the technique was named digital slide dynamic morphometry. Twelve investigators completed the task, the majority of them performing the multiple evaluations of each of the cases in less than 12 minutes.
Conclusions:
Digital slide dynamic morphometry has various potential applications and might be a useful tool for the assessment of histologic parameters originally conceived for optical microscopy that need to be quantified.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (3) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
Image microarrays (IMA): Digital pathology's missing tool
Jason Hipp, Jerome Cheng, Liron Pantanowitz, Stephen Hewitt, Yukako Yagi, James Monaco, Anant Madabhushi, Jaime Rodriguez-canales, Jeffrey Hanson, Sinchita Roy-Chowdhuri, Armando C Filie, Michael D Feldman, John E Tomaszewski, Natalie NC Shih, Victor Brodsky, Giuseppe Giaccone, Michael R Emmert-Buck, Ulysses J Balis
J Pathol Inform
2011, 2:47 (29 October 2011)
DOI
:10.4103/2153-3539.86829
PMID
:22200030
Introduction:
The increasing availability of whole slide imaging (WSI) data sets (digital slides) from glass slides offers new opportunities for the development of computer-aided diagnostic (CAD) algorithms. With the all-digital pathology workflow that these data sets will enable in the near future, literally millions of digital slides will be generated and stored. Consequently, the field in general and pathologists, specifically, will need tools to help extract actionable information from this new and vast collective repository.
Methods:
To address this limitation, we designed and implemented a tool (dCORE) to enable the systematic capture of image tiles with constrained size and resolution that contain desired histopathologic features.
Results:
In this communication, we describe a user-friendly tool that will enable pathologists to mine digital slides archives to create image microarrays (IMAs). IMAs are to digital slides as tissue microarrays (TMAs) are to cell blocks. Thus, a single digital slide could be transformed into an array of hundreds to thousands of high quality digital images, with each containing key diagnostic morphologies and appropriate controls. Current manual digital image cut-and-paste methods that allow for the creation of a grid of images (such as an IMA) of matching resolutions are tedious.
Conclusion:
The ability to create IMAs representing hundreds to thousands of vetted morphologic features has numerous applications in education, proficiency testing, consensus case review, and research. Lastly, in a manner analogous to the way conventional TMA technology has significantly accelerated
in situ
studies of tissue specimens use of IMAs has similar potential to significantly accelerate CAD algorithm development.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (4) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
Evaluation and optimization for liquid-based preparation cytology in whole slide imaging
Roy E Lee, David S McClintock, Nora M Laver, Yukako Yagi
J Pathol Inform
2011, 2:46 (19 October 2011)
DOI
:10.4103/2153-3539.86285
PMID
:22059147
Background:
Cytology poses different obstacles in whole slide imaging compared to surgical pathology slides. A single focal plane suffices for most of the latter, but cytology slides are thicker, potentially requiring multiple focal planes for adequate diagnostic information. Multiple focal planes adversely impact scanning time per slide, evaluation times, and file sizes. In this pilot study, we evaluated and compared the multilayer stack method to the extended focus algorithm as an alternative which collapses multiple focal planes into a single image, retaining only focused areas from each plane.
Materials and Methods:
10 SurePath
;
cervical cytology slides were scanned at three thickness settings: 18, 24, and 30 μm. Three scanners were used: (1) Hamamatsu Nanozoomer 2.0-HT, (2) 3DHISTECH Mirax scan, and (3) Bioimagene iScan Coreo Au. The Nanozoomer and iScan utilized multilayer stacking, while the Mirax files were composited by extended focus. Scan times and file sizes were recorded, and image quality compared.
Results:
The Nanozoomer stacks averaged 1.58 gb and around 25 min for each slide, while the iScan stacks ranged from 6.23 to 9.3 gb and took 34-50 min to scan. The Mirax images averaged 210 mb and took 13-20 min to scan. Multilayer stack image quality from both Nanozoomer and iScan was fairly comparable. The iScan revealed significant mechanical issues that did not correspond to user settings. The Mirax images showed worrisome loss of crisp focus detail, worsening with increasing focal planes and impacting assessment of nuclear contours and chromatin detail.
Conclusions:
The optimal number of focal planes remains unknown for cytology. Multilayer stacks require excessive scanning time, network bandwidth, and file storage. Extended focus was evaluated as an alternative, but significant image quality issues were revealed. Further large-scale studies are needed to assess their clinical impact.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (7) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
High-definition hematoxylin and eosin staining in a transition to digital pathology
Jamie D Martina, Christopher Simmons, Drazen M Jukic
J Pathol Inform
2011, 2:45 (19 October 2011)
DOI
:10.4103/2153-3539.86284
PMID
:22059146
Introduction:
A lot of attention has been generated in recent years by digital pathology and telepathology. Multiple reasons for and barriers to effective adoption are discussed in the current literature. Digital slides are the most promising medium at this time. The goal of our study was to evaluate whether the change in the methodology, particularly utilizing the so-called high-definition hematoxylin and eosin (H and E) slides, enhanced the quality of the final digital slide, and whether pathologists who tested the results perceived this as a difference in quality.
Methods:
The study was a blinded comparison of digital slides prepared using two methods: standard H&E batch staining and automated individual "high definition" HD HE staining. Four pathologists have compared 80 cases stained with each method.
Results:
The results discussed in this study show potential promise that the utilization of protocol(s) adapted for tissue and for imaging might be preferable for digital pathology in at least some of the pathology subspecialties. In particular, the protocol evaluated here was capable of turning out digital slides that had more contrast and detail, and therefore were perceived to provide enhanced diagnostically significant information for the pathologist.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (9) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Review Article:
Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method
Michael C Montalto, Richard R McKay, Robert J Filkins
J Pathol Inform
2011, 2:44 (19 October 2011)
DOI
:10.4103/2153-3539.86282
PMID
:22059145
Accurate focusing is a critical challenge of whole slide imaging, primarily due to inherent tissue topography variability. Traditional line scanning and tile-based scanning systems are limited in their ability to acquire a high degree of focus points while still maintaining high throughput. This review examines limitations with first-generation whole slide scanning systems and explores a novel approach that employs continuous autofocus, referred to as independent dual sensor scanning. This "second-generation" concept decouples image acquisition from focusing, allowing for rapid scanning while maintaining continuous accurate focus. The technical concepts, merits, and limitations of this method are explained and compared to that of a traditional whole slide scanning system.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (24) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Abstract:
Abstracts: Pathology Informatics 2011 Meeting
J Pathol Inform
2011, 2:43 (3 October 2011)
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010