Show all abstracts Show selected abstracts Add to my list |
|
 |
Book Review: Review of "Informatics in Medical Imaging" by Kagadis GC, Langer SG (Editors) |
|
Claudia Mello-Thoms J Pathol Inform 2012, 3:7 (29 February 2012) |
[HTML Full text] [PDF] [Mobile Full text] [EPub] [Sword Plugin for Repository]Beta |
|
|
|
|
|
 |
Letter: All aboard: Cytotechnology student training in pathology informatics |
|
Judith Modery, Walid E Khalbuss, Liron Pantanowitz J Pathol Inform 2012, 3:6 (29 February 2012) DOI:10.4103/2153-3539.93403 PMID:22439126 |
[HTML Full text] [PDF] [Mobile Full text] [EPub] [Citations (1) ] [PubMed] [Sword Plugin for Repository]Beta |
|
|
|
|
|
|
Original Article: How useful are delta checks in the 21st century? A stochastic-dynamic model of specimen mix-up and detection |
|
Katie Ovens, Christopher Naugler J Pathol Inform 2012, 3:5 (29 February 2012) DOI:10.4103/2153-3539.93402 PMID:22439125Introduction: Delta checks use two specimen test results taken in succession in order to detect test result changes greater than expected physiological variation. One of the most common and serious errors detected by delta checks is specimen mix-up errors. The positive and negative predictive values of delta checks for detecting specimen mix-up errors, however, are largely unknown. Materials and Methods: We addressed this question by first constructing a stochastic dynamic model using repeat test values for five analytes from approximately 8000 inpatients in Calgary, Alberta, Canada. The analytes examined were sodium, potassium, chloride, bicarbonate, and creatinine. The model simulated specimen mix-up errors by randomly switching a set number of pairs of second test results. Sensitivities and specificities were then calculated for each analyte for six combinations of delta check equations and cut-off values from the published literature. Results: Delta check specificities obtained from this model ranged from 50% to 99%; however the sensitivities were generally below 20% with the exception of creatinine for which the best performing delta check had a sensitivity of 82.8%. Within a plausible incidence range of specimen mix-ups the positive predictive values of even the best performing delta check equation and analyte became negligible. Conclusion: This finding casts doubt on the ongoing clinical utility of delta checks in the setting of low rates of specimen mix-ups. |
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [Citations (4) ] [PubMed] [Sword Plugin for Repository]Beta |
|
|
|
|
|
 |
Original Article: Full field optical coherence tomography can identify spermatogenesis in a rodent sertoli-cell only model |
|
Ranjith Ramasamy, Joshua Sterling, Maryem Manzoor, Bekheit Salamoon, Manu Jain, Erik Fisher, Phillip S Li, Peter N Schlegel, Sushmita Mukherjee J Pathol Inform 2012, 3:4 (29 February 2012) DOI:10.4103/2153-3539.93401 PMID:22439124Background: Microdissection testicular sperm extraction (micro-TESE) has replaced conventional testis biopsies as a method of choice for obtaining sperm for in vitro fertilization for men with nonobstructive azoospermia. A technical challenge of micro-TESE is that the low magnification inspection of the tubules with a surgical microscope is insufficient to definitively identify sperm-containing tubules, necessitating tissue removal and cytologic assessment. Full field optical coherence tomography (FFOCT) uses white light interference microscopy to generate quick high-resolution tomographic images of fresh (unprocessed and unstained) tissue. Furthermore, by using a nonlaser safe light source (150 W halogen lamp) for tissue illumination, it ensures that the sperm extracted for in vitro fertilization are not photo-damaged or mutagenized. Materials and Methods: A focal Sertoli-cell only rodent model was created with busulfan injection in adult rats. Ex vivo testicular tissues from both normal and busulfan-treated rats were imaged with a commercial modified FFOCT system, Light-CT TM , and the images were correlated with gold standard hematoxylin and eosin staining. Results: Light-CT TM identified spermatogenesis within the seminiferous tubules in freshly excised testicular tissue, without the use of exogenous contrast or fixation. Normal adult rats exhibited tubules with uniform size and shape (diameter 328 ±11 μm). The busulfan-treated animals showed marked heterogeneity in tubular size and shape (diameter 178 ± 35 μm) and only 10% contained sperm within the lumen. Conclusion : FFOCT has the potential to facilitate real-time visualization of spermatogenesis in humans, and aid in micro-TESE for men with infertility. |
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [Citations (7) ] [PubMed] [Sword Plugin for Repository]Beta |
|
|
|
|
|
 |
Original Article: A novel strategy for evaluating the effects of an electronic test ordering alert message: Optimizing cardiac marker use |
|
Jason M Baron, Kent B Lewandrowski, Irina K Kamis, Balaji Singh, Sidi M Belkziz, Anand S Dighe J Pathol Inform 2012, 3:3 (29 February 2012) DOI:10.4103/2153-3539.93400 PMID:22439123Background: Laboratory ordering functions within computerized provider order entry (CPOE) systems typically support the display of electronic alert messages to improve test utilization or implement new ordering policies. However, alert strategies have been shown to vary considerably in their success and the characteristics contributing to an alert's success are poorly understood. Improved methodologies are needed to evaluate alerts and their mechanisms of action. Materials and Methods: Clinicians order inpatient and emergency department laboratory tests using our institutional CPOE system. We analyzed user interaction data captured by our CPOE system to evaluate how clinicians responded to an alert. We evaluated an alert designed to implement an institutional policy restricting the indications for ordering creatine kinase-MB (CKMB). Results: Within 2 months of alert implementation, CKMB-associated searches declined by 79% with a corresponding decline in CKMB orders. Furthermore, while prior to alert implementation, clinicians searching for CKMB ultimately ordered this test 99% of the time, following implementation, only 60% of CKMB searches ultimately led to CKMB test orders. This difference presumably represents clinicians who reconsidered the need for CKMB in response to the alert, demonstrating the alert's just-in-time advisory capability. In addition, as clinicians repeatedly viewed the alert, there was a "dose-dependant" decrease in the fraction of searches without orders. This presumably reflects the alerting strategy's long-term educational component, as clinicians aware of the new policy will not search for CKMB when not indicated. Conclusions: Our analytic approach provides insight into the mechanism of a CPOE alert and demonstrates that alerts may act through a combination of just-in-time advice and longer term education. Use of this approach when implementing alerts may prove useful to improve the success of a given alerting strategy. |
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [Citations (9) ] [PubMed] [Sword Plugin for Repository]Beta |
|
|
|
|
|
|
Original Article: Virtual microscopy using whole-slide imaging as an enabler for teledermatopathology: A paired consultant validation study |
|
Ayman Al Habeeb, Andrew Evans, Danny Ghazarian J Pathol Inform 2012, 3:2 (29 February 2012) DOI:10.4103/2153-3539.93399 PMID:22439122Background: There is a need for telemedicine, particularly in countries with large geographical areas and widely scattered low-density communities as is the case of the Canadian system, particularly if equality of care is to be achieved or the difference gap is to be narrowed between urban centers and more peripheral communities. Aims: 1. To validate teledermatopathology as a diagnostic tool in under-serviced areas; 2. To test its utilization in inflammatory and melanocytic lesions; 3. To compare the impact of 20× (0.5 μm/pixel) and 40× (0.25 μm/pixel) scans on the diagnostic accuracy. Materials and Methods: A total of 103 dermatopathology cases divided into three arms were evaluated by two pathologists and results compared. The first arm consisted of 79 consecutive routine cases (n=79). The second arm consisted of 12 inflammatory skin biopsies (n=12) and the third arm consisted of 12 melanocytic lesions (n=12). Diagnosis concordance was used to evaluate the first arm. Whereas concordance of preset objective findings were used to evaluate the second and third arms. Results: The diagnostic concordance rate for the first arm was 96%. The concordance rates of the objective findings for the second and third arms were 100%. The image quality was deemed superior to light microscopy for 40× scans. Conclusion: The current scanners produce high-resolution images that are adequate for evaluation of a variety of cases of different complexities. |
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [Citations (17) ] [PubMed] [Sword Plugin for Repository]Beta |
|
|
|
|
|
 |
Research Article: A pathologist-in-the-loop IHC antibody test selection using the entropy-based probabilistic method |
|
Dmitriy Shin, Gerald Arthur, Charles Caldwell, Mihail Popescu, Marius Petruc, Alberto Diaz-Arias, Chi-Ren Shyu J Pathol Inform 2012, 3:1 (29 February 2012) DOI:10.4103/2153-3539.93393 PMID:22439121Background: Immunohistochemistry (IHC) is an important tool to identify and quantify expression of certain proteins (antigens) to gain insights into the molecular processes in a diseased tissue. However, it is a challenge for pathologists to remember the discriminative characteristics of the growing number of such antigens across multiple diseases. The complexity of their expression patterns, fueled by continuous discoveries in molecular pathology, gives rise to a combinatorial explosion that places an unprecedented burden on a practicing pathologist and therefore increases cost and variability of IHC studies. Materials and Methods: To tackle these issues, we have developed antibody test optimized selection method, a novel informatics tool to help pathologists in improving the IHC antibody selection process. The method uses extensions of Shannon's information entropies and Bayesian probabilities to dynamically build an efficient diagnostic tree. Results: A comparative analysis of our method with the expert and World Health Organization classification guidelines showed that the proposed method brings threefold reduction in number of antibody tests required to reach a diagnostic conclusion. Conclusion: The developed method can significantly streamline the antibody test selection process, decrease associated costs and reduce inter- and intrapathologist variability in IHC decision-making. |
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [Citations (1) ] [PubMed] [Sword Plugin for Repository]Beta |
|
|
|
|
|