Contact us
|
Home
|
Login
| Users Online: 281
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
March
[
1
]
January
[
10
]
2021
December
[
7
]
November
[
9
]
September
[
8
]
August
[
2
]
July
[
1
]
June
[
4
]
May
[
3
]
April
[
4
]
March
[
7
]
February
[
3
]
January
[
6
]
2020
December
[
2
]
November
[
5
]
October
[
3
]
September
[
2
]
August
[
8
]
July
[
4
]
June
[
2
]
May
[
1
]
April
[
3
]
March
[
3
]
February
[
6
]
January
[
1
]
2019
December
[
6
]
November
[
4
]
September
[
4
]
August
[
3
]
July
[
6
]
June
[
1
]
May
[
2
]
April
[
6
]
March
[
3
]
February
[
4
]
January
[
2
]
2018
December
[
10
]
November
[
4
]
October
[
3
]
September
[
4
]
August
[
1
]
July
[
3
]
June
[
5
]
May
[
4
]
April
[
10
]
March
[
2
]
February
[
4
]
2017
December
[
5
]
November
[
4
]
October
[
3
]
September
[
9
]
July
[
5
]
June
[
2
]
May
[
4
]
April
[
6
]
March
[
6
]
February
[
7
]
2016
December
[
7
]
November
[
5
]
October
[
3
]
September
[
7
]
August
[
1
]
July
[
7
]
May
[
8
]
April
[
7
]
March
[
4
]
February
[
2
]
January
[
5
]
2015
November
[
4
]
October
[
5
]
September
[
5
]
August
[
4
]
July
[
3
]
June
[
19
]
May
[
5
]
April
[
1
]
March
[
5
]
February
[
9
]
January
[
3
]
2014
November
[
2
]
October
[
5
]
September
[
4
]
August
[
6
]
July
[
8
]
June
[
1
]
May
[
3
]
March
[
8
]
February
[
3
]
January
[
4
]
2013
December
[
5
]
November
[
2
]
October
[
4
]
September
[
4
]
August
[
3
]
July
[
3
]
June
[
5
]
May
[
7
]
March
[
18
]
February
[
1
]
January
[
1
]
2012
December
[
6
]
November
[
1
]
October
[
4
]
September
[
4
]
August
[
7
]
July
[
2
]
June
[
1
]
May
[
2
]
April
[
7
]
March
[
6
]
February
[
7
]
January
[
13
]
2011
December
[
3
]
November
[
1
]
October
[
7
]
August
[
9
]
July
[
3
]
June
[
7
]
May
[
3
]
March
[
6
]
February
[
8
]
January
[
6
]
2010
December
[
4
]
November
[
1
]
October
[
6
]
September
[
1
]
August
[
6
]
July
[
6
]
May
[
5
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Commentary
|
Editorial
|
Erratum
|
Original Article
|
Original Articles
|
Original Research
|
Research Article
|
Review Article
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Erratum:
Erratum: Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Assoc
J Pathol Inform
2019, 10:15 (24 April 2019)
DOI
:10.4103/2153-3539.259372
PMID
:31198617
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (1) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Review Article:
National Society for Histotechnology and digital pathology association online self-paced digital pathology certificate of completion program
Elizabeth A Chlipala, Traci DeGeer, Kathleen Dwyer, Shelley Ganske, David Krull, Haydee Lara, Lisa Manning, Dylan Steiner, Lisa Stephens, Diane Sterchi, Aubrey Wanner, Connie Wildeman, Liron Pantanowitz
J Pathol Inform
2019, 10:14 (3 April 2019)
DOI
:10.4103/jpi.jpi_5_19
PMID
:31057983
The field of digital pathology has rapidly expanded within the last few years with increasing adoption and growth in popularity. As digital pathology matures, it is apparent that we need well-trained individuals to manage our whole-slide imaging systems. This editorial introduces the joint National Society for Histotechnology and Digital Pathology Association online self-paced digital pathology certificate program which was launched in May 2018 that was established to meet this demand. An overview of how this program was developed, the content of the educational modules, and the way that this program is being offered is discussed.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
Construction and utilization of a neural network model to predict current procedural terminology codes from pathology report texts
Jay J Ye
J Pathol Inform
2019, 10:13 (3 April 2019)
DOI
:10.4103/jpi.jpi_3_19
PMID
:31057982
Background:
At our department, each specimen was assigned a tentative current procedural terminology (CPT) code at accessioning. The codes were subject to subsequent changes by pathologist assistants and pathologists. After the cases had been finalized, their CPT codes went through a final verification step by coding staff, with the aid of a keyword-based CPT code-checking web application. Greater than 97% of the initial assignments were correct. This article describes the construction of a CPT code-predicting neural network model and its incorporation into the CPT code-checking application.
Materials and Methods:
R programming language was used. Pathology report texts and CPT codes for the cases finalized during January 1–November 30, 2018, were retrieved from the database. The order of the specimens was randomized before the data were partitioned into training and validation set. R Keras package was used for both model training and prediction. The chosen neural network had a three-layer architecture consisting of a word-embedding layer, a bidirectional long short-term memory (LSTM) layer, and a densely connected layer. It used concatenated header-diagnosis texts as the input.
Results:
The model predicted CPT codes in both the validation data set and the test data set with an accuracy of 97.5% and 97.6%, respectively. Closer examination of the test data set (cases from December 1 to 27, 2018) revealed two interesting observations. First, among the specimens that had incorrect initial CPT code assignments, the model disagreed with the initial assignments in 73.6% (117/159) and agreed in 26.4% (42/159). Second, the model identified nine additional specimens with incorrect CPT codes that had evaded all steps of checking.
Conclusions:
A neural network model using report texts to predict CPT codes can achieve high accuracy in prediction and moderate sensitivity in error detection. Neural networks may play increasing roles in CPT coding in surgical pathology.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (5) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Technical Note:
Dual-Personality DICOM-TIFF for whole slide images: A migration technique for legacy software
David A Clunie
J Pathol Inform
2019, 10:12 (3 April 2019)
DOI
:10.4103/jpi.jpi_93_18
PMID
:31057981
Despite recently organized Digital Imaging and Communications in Medicine (DICOM) testing and demonstration events involving numerous participating vendors, it is still the case that scanner manufacturers, software developers, and users continue to depend on proprietary file formats rather than adopting the standard DICOM whole slide microscopic image object. Many proprietary formats are Tag Image File Format (TIFF) based, and existing applications and libraries can read tiled TIFF files. The sluggish adoption of DICOM for whole slide image encoding can be temporarily mitigated by the use of dual-personality DICOM-TIFF files. These are compatible with the installed base of TIFF-based software, as well as newer DICOM-based software. The DICOM file format was deliberately designed to support this dual-personality capability for such transitional situations, although it is rarely used. Furthermore, existing TIFF files can be converted into dual-personality DICOM-TIFF without changing the pixel data. This paper demonstrates the feasibility of extending the dual-personality concept to multiframe-tiled pyramidal whole slide images and explores the issues encountered. Open source code and sample converted images are provided for testing.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (7) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Breast cancer prognostic factors in the digital era: Comparison of Nottingham grade using whole slide images and glass slides
Tara M Davidson, Mara H Rendi, Paul D Frederick, Tracy Onega, Kimberly H Allison, Ezgi Mercan, Tad T Brunyé, Linda G Shapiro, Donald L Weaver, Joann G Elmore
J Pathol Inform
2019, 10:11 (3 April 2019)
DOI
:10.4103/jpi.jpi_29_18
PMID
:31057980
Background:
To assess reproducibility and accuracy of overall Nottingham grade and component scores using digital whole slide images (WSIs) compared to glass slides.
Methods:
Two hundred and eight pathologists were randomized to independently interpret 1 of 4 breast biopsy sets using either glass slides or digital WSI. Each set included 5 or 6 invasive carcinomas (22 total invasive cases). Participants interpreted the same biopsy set approximately 9 months later following a second randomization to WSI or glass slides. Nottingham grade, including component scores, was assessed on each interpretation, providing 2045 independent interpretations of grade. Overall grade and component scores were compared between pathologists (interobserver agreement) and for interpretations by the same pathologist (intraobserver agreement). Grade assessments were compared when the format (WSI vs. glass slides) changed or was the same for the two interpretations.
Results:
Nottingham grade intraobserver agreement was highest using glass slides for both interpretations (73%, 95% confidence interval [CI]: 68%, 78%) and slightly lower but not statistically different using digital WSI for both interpretations (68%, 95% CI: 61%, 75%;
P
= 0.22). The agreement was lowest when the format changed between interpretations (63%, 95% CI: 59%, 68%). Interobserver agreement was significantly higher (
P
< 0.001) using glass slides versus digital WSI (68%, 95% CI: 66%, 70% versus 60%, 95% CI: 57%, 62%, respectively). Nuclear pleomorphism scores had the lowest inter- and intra-observer agreement. Mitotic scores were higher on glass slides in inter- and intra-observer comparisons.
Conclusions:
Pathologists' intraobserver agreement (reproducibility) is similar for Nottingham grade using glass slides or WSI. However, slightly lower agreement between pathologists suggests that verification of grade using digital WSI may be more challenging.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (6) ]
[PubMed]
[Sword Plugin for Repository]
Beta
ABSTRACTS:
Digital and Computational Pathology: Bring the Future into Focus
J Pathol Inform
2019, 10:10 (1 April 2019)
DOI
:10.4103/2153-3539.255259
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010