Contact us
|
Home
|
Login
| Users Online: 362
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
3
]
2021
November
[
2
]
September
[
3
]
August
[
1
]
June
[
2
]
January
[
1
]
2020
November
[
3
]
August
[
1
]
July
[
1
]
May
[
1
]
February
[
1
]
2019
December
[
2
]
September
[
1
]
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
April
[
1
]
March
[
1
]
February
[
2
]
2018
December
[
4
]
November
[
1
]
August
[
1
]
July
[
1
]
May
[
1
]
2017
October
[
1
]
September
[
3
]
June
[
1
]
May
[
1
]
March
[
1
]
February
[
1
]
2016
April
[
1
]
March
[
1
]
January
[
2
]
2015
October
[
3
]
September
[
3
]
June
[
4
]
March
[
2
]
January
[
1
]
2014
October
[
2
]
September
[
2
]
August
[
2
]
July
[
1
]
June
[
1
]
May
[
1
]
March
[
1
]
January
[
2
]
2013
December
[
2
]
November
[
1
]
July
[
1
]
June
[
1
]
March
[
2
]
2012
December
[
1
]
September
[
3
]
August
[
1
]
July
[
1
]
April
[
3
]
March
[
1
]
February
[
1
]
2011
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
March
[
2
]
January
[
1
]
2010
October
[
3
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Book Review
|
Brief Report
|
Commentary
|
Editorial
|
Erratum
|
Letter
|
Original Article
|
Research Article
|
Review Article
|
Symposium
|
Technical Note
|
View Point
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Research Article:
Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images
Soheila Gheisari, Daniel R Catchpoole, Amanda Charlton, Paul J Kennedy
J Pathol Inform
2018, 9:17 (2 May 2018)
DOI
:10.4103/jpi.jpi_73_17
PMID
:29862127
Background:
Neuroblastoma is the most common extracranial solid tumor in children younger than 5 years old. Optimal management of neuroblastic tumors depends on many factors including histopathological classification. The gold standard for classification of neuroblastoma histological images is visual microscopic assessment. In this study, we propose and evaluate a deep learning approach to classify high-resolution digital images of neuroblastoma histology into five different classes determined by the Shimada classification.
Subjects and Methods:
We apply a combination of convolutional deep belief network (CDBN) with feature encoding algorithm that automatically classifies digital images of neuroblastoma histology into five different classes. We design a three-layer CDBN to extract high-level features from neuroblastoma histological images and combine with a feature encoding model to extract features that are highly discriminative in the classification task. The extracted features are classified into five different classes using a support vector machine classifier.
Data:
We constructed a dataset of 1043 neuroblastoma histological images derived from Aperio scanner from 125 patients representing different classes of neuroblastoma tumors.
Results:
The weighted average F-measure of 86.01% was obtained from the selected high-level features, outperforming state-of-the-art methods.
Conclusion:
The proposed computer-aided classification system, which uses the combination of deep architecture and feature encoding to learn high-level features, is highly effective in the classification of neuroblastoma histological images.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010