Contact us
|
Home
|
Login
| Users Online: 412
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2021
January
[
1
]
2020
December
[
1
]
October
[
1
]
July
[
1
]
2019
April
[
1
]
February
[
1
]
2018
December
[
1
]
September
[
1
]
June
[
1
]
May
[
2
]
April
[
3
]
2017
December
[
1
]
November
[
1
]
October
[
1
]
September
[
1
]
July
[
1
]
June
[
1
]
April
[
2
]
March
[
1
]
February
[
2
]
2016
December
[
1
]
November
[
1
]
October
[
1
]
September
[
2
]
July
[
1
]
May
[
1
]
April
[
1
]
February
[
1
]
January
[
1
]
2015
November
[
2
]
September
[
1
]
August
[
1
]
July
[
2
]
June
[
1
]
March
[
1
]
January
[
2
]
2014
November
[
1
]
September
[
1
]
August
[
1
]
July
[
3
]
March
[
1
]
2013
September
[
1
]
August
[
1
]
January
[
1
]
2012
November
[
1
]
June
[
1
]
April
[
1
]
2011
December
[
1
]
November
[
1
]
October
[
1
]
August
[
1
]
June
[
1
]
May
[
2
]
March
[
1
]
2010
October
[
1
]
May
[
1
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Book Review
|
Brief Report
|
Commentary
|
Editorial
|
Erratum
|
Letter
|
Original Article
|
Research Article
|
Review Article
|
Symposium
|
Technical Note
|
View Point
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Technical Note:
Optimized JPEG 2000 compression for efficient storage of histopathological whole-Slide images
Henrik Helin, Teemu Tolonen, Onni Ylinen, Petteri Tolonen, Juha Näpänkangas, Jorma Isola
J Pathol Inform
2018, 9:20 (25 May 2018)
DOI
:10.4103/jpi.jpi_69_17
PMID
:29910969
Background:
Whole slide images (WSIs, digitized histopathology glass slides) are large data files whose long-term storage remains a significant cost for pathology departments. Currently used WSI formats are based on lossy image compression alogrithms, either using JPEG or its more efficient successor JPEG 2000. While the advantages of the JPEG 2000 algorithm (JP2) are commonly recognized, its compression parameters have not been fully optimized for pathology WSIs.
Methods:
We defined an optimized parametrization for JPEG 2000 image compression, designated JP2-WSI, to be used specifically with histopathological WSIs. Our parametrization is based on allowing a very high degree of compression on the background part of the WSI while using a conventional amount of compression on the tissue-containing part of the image, resulting in high overall compression ratios.
Results:
When comparing the compression power of JP2-WSI to the commonly used fixed 35:1 compression ratio JPEG 2000 and the default image formats of proprietary Aperio, Hamamatsu, and 3DHISTECH scanners, JP2-WSI produced the smallest file sizes and highest overall compression ratios for all 17 slides tested. The image quality, as judged by visual inspection and peak signal-to-noise ratio (PSNR) measurements, was equal to or better than the compared image formats. The average file size by JP2-WSI amounted to 15, 9, and 16 percent, respectively, of the file sizes of the three commercial scanner vendors' proprietary file formats (3DHISTECH MRXS, Aperio SVS, and Hamamatsu NDPI). In comparison to the commonly used 35:1 compressed JPEG 2000, JP2-WSI was three times more efficient.
Conclusions:
JP2-WSI allows very efficient and cost-effective data compression for whole slide images without loss of image information required for histopathological diagnosis.
[ABSTRACT]
[HTML Full text]
[PDF]
[PubMed]
[Sword Plugin for Repository]
Beta
Technical Note:
Utilization of open source technology to create cost-effective microscope camera systems for teaching
Anil Reddy Konduru, Balasaheb R Yelikar, KV Sathyashree, Ankur Kumar
J Pathol Inform
2018, 9:19 (25 May 2018)
DOI
:10.4103/jpi.jpi_15_18
PMID
:29910968
Background:
Open source technologies and mobile innovations have radically changed the way people interact with technology. These innovations and advancements have been used across various disciplines and already have a significant impact. Microscopy, with focus on visually appealing contrasting colors for better appreciation of morphology, forms the core of the disciplines such as Pathology, microbiology, and anatomy. Here, learning happens with the aid of multi-head microscopes and digital camera systems for teaching larger groups and in organizing interactive sessions for students or faculty of other departments.
Methods:
The cost of the original equipment manufacturer (OEM) camera systems in bringing this useful technology at all the locations is a limiting factor. To avoid this, we have used the low-cost technologies like Raspberry Pi, Mobile high definition link and 3D printing for adapters to create portable camera systems.
Results:
Adopting these open source technologies enabled us to convert any binocular or trinocular microscope be connected to a projector or HD television at a fraction of the cost of the OEM camera systems with comparable quality.
Conclusion:
These systems, in addition to being cost-effective, have also provided the added advantage of portability, thus providing the much-needed flexibility at various teaching locations.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
|
Feedback
|
Disclaimer
|
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010