Contact us
|
Home
|
Login
| Users Online: 370
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2021
April
[
4
]
March
[
7
]
February
[
3
]
January
[
6
]
2020
December
[
2
]
November
[
5
]
October
[
3
]
September
[
2
]
August
[
8
]
July
[
4
]
June
[
2
]
May
[
1
]
April
[
3
]
March
[
3
]
February
[
6
]
January
[
1
]
2019
December
[
6
]
November
[
4
]
September
[
4
]
August
[
3
]
July
[
6
]
June
[
1
]
May
[
2
]
April
[
6
]
March
[
3
]
February
[
4
]
January
[
2
]
2018
December
[
10
]
November
[
4
]
October
[
3
]
September
[
4
]
August
[
1
]
July
[
3
]
June
[
5
]
May
[
4
]
April
[
10
]
March
[
2
]
February
[
4
]
2017
December
[
5
]
November
[
4
]
October
[
3
]
September
[
9
]
July
[
5
]
June
[
2
]
May
[
4
]
April
[
6
]
March
[
6
]
February
[
7
]
2016
December
[
7
]
November
[
5
]
October
[
3
]
September
[
7
]
August
[
1
]
July
[
7
]
May
[
8
]
April
[
7
]
March
[
4
]
February
[
2
]
January
[
5
]
2015
November
[
4
]
October
[
5
]
September
[
5
]
August
[
4
]
July
[
3
]
June
[
19
]
May
[
5
]
April
[
1
]
March
[
5
]
February
[
9
]
January
[
3
]
2014
November
[
2
]
October
[
5
]
September
[
4
]
August
[
6
]
July
[
8
]
June
[
1
]
May
[
3
]
March
[
8
]
February
[
3
]
January
[
4
]
2013
December
[
5
]
November
[
2
]
October
[
4
]
September
[
4
]
August
[
3
]
July
[
3
]
June
[
5
]
May
[
7
]
March
[
18
]
February
[
1
]
January
[
1
]
2012
December
[
6
]
November
[
1
]
October
[
4
]
September
[
4
]
August
[
7
]
July
[
2
]
June
[
1
]
May
[
2
]
April
[
7
]
March
[
6
]
February
[
7
]
January
[
13
]
2011
December
[
3
]
November
[
1
]
October
[
7
]
August
[
9
]
July
[
3
]
June
[
7
]
May
[
3
]
March
[
6
]
February
[
8
]
January
[
6
]
2010
December
[
4
]
November
[
1
]
October
[
6
]
September
[
1
]
August
[
6
]
July
[
6
]
May
[
5
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstract
|
Book Review
|
Commentary
|
Editorial
|
Letters
|
Original Articles
|
Research Article
|
Review Articles
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Technical note:
Use of a laboratory information system driven tool for pre-signout quality assurance of random cytopathology reports
Sonal Kamat, Anil V Parwani, Walid E Khalbuss, Sara E Monaco, Susan M Kelly, Luke T Wiehagen, Anthony L Piccoli, Karen M Lassige, Liron Pantanowitz
J Pathol Inform
2011, 2:42 (27 August 2011)
DOI
:10.4103/2153-3539.84279
PMID
:21969923
Background:
Quality assurance (QA) programs in cytopathology laboratories in the USA currently primarily involve the review of Pap tests per clinical laboratory improvement amendments of 1988 federal regulations. A pre-signout quality assurance tool (PQAT) at our institution allows the laboratory information system (LIS) to also automatically and randomly select an adjustable percentage of non-gynecological cytopathology cases for review before release of the final report. The aim of this study was to review our experience and the effectiveness of this novel PQAT tool in cytology.
Materials and Methods:
Software modifications in the existing LIS application (CoPathPlus, Cerner) allow for the random QA of 8% of cases prior to signout. Selected cases are assigned to a second QA cytopathologist for review and all agreement and disagreements tracked. Detected errors are rectified before the case is signed out. Data from cases selected for PQAT over an 18-month period were collected and analyzed.
Results:
The total number of non-gynecological cases selected for QA review was 1339 (7.45%) out of 17,967 cases signed out during this time period. Most (1304) cases (97.4%) had an agreement in diagnosis. In 2.6% of cases, there were disagreements, including 34 minor and only 1 major disagreement. Average turnaround time of cases selected for review was not significantly altered.
Conclusion:
The PQAT provides a prospective QA mechanism in non-gynecological cytopathology to prevent diagnostic errors from occurring. This LIS-driven tool allows for peer review and corrective action to be taken prior to reporting without delaying turnaround time, thereby improving patient safety.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (3) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
Use of mobile high-resolution device for remote frozen section evaluation of whole slide images
Joel Ramey, Kar Ming Fung, Lewis A Hassell
J Pathol Inform
2011, 2:41 (27 August 2011)
DOI
:10.4103/2153-3539.84276
PMID
:21969922
Introduction:
With recent advances, it is now possible to view whole slide images (WSI) on mobile, high-resolution, viewing devices (MVD). This creates a new paradigm in which MVDs may be used for consultation and/or diagnosis. Validation of the results with devices is important for practitioners and regulators. We evaluated the use of MVDs in frozen section (FS) interpretation.
Methods:
A series of 72 consecutive FS cases were selected for potential inclusion in the study. A 67 case subset of these were successfully scanned at 20x magnification. Scan times were recorded. A sample of WSI FS cases, with gross and clinical information, was presented to six pathologists on an iPad MVD using the Interpath application. Times to diagnosis were recorded. Results were compared with the original reported and final diagnosis. Participants also completed a survey assessing image quality, interface, and diagnostic comfort level.
Results:
Scan times averaged two minutes and 46 seconds per slide, (standard deviation [SD] 2 minutes 46 seconds). Evaluation times averaged 4 minutes and 59 seconds per case, range to 13 minutes and 50 seconds, SD 3 minutes 48 seconds. Concordance between initial FS diagnosis and rendered through the MVD was 89%. Minor discrepancies made up 8% and major disagreements 3%. The kappa statistic for this series is 0.85. Participants rated the experience at 5 on a 10-point scale, range 3 to 7. Two-thirds found the image quality to be adequate, half were satisfied with image resolution, and 33% would be willing to make a diagnosis on the iPad, plus one only for special cases. Five of six respondents (83%) found the navigation with the study software difficult.
Conclusion:
Image fidelity and resolution makes the iPad potentially suitable for WSI evaluation of FS. Acceptable accuracy is attainable for FS interpretation. But, although possible to obtain acceptable results, use of the iPad with Interpath to view WSI is not easy and meets user resistance. The obstacle of slide navigation at high magnification could introduce frustrations, delays, or errors.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (13) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Using XML to encode TMA DES metadata
Oliver Lyttleton, Alexander Wright, Darren Treanor, Paul Lewis
J Pathol Inform
2011, 2:40 (24 August 2011)
DOI
:10.4103/2153-3539.84233
PMID
:21969921
Background:
The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not.
Materials and Methods:
We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF.
Results:
We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service.
Conclusions:
All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
Implementation of whole slide imaging in surgical pathology: A value added approach
Mike Isaacs, Jochen K Lennerz, Stacey Yates, Walter Clermont, Joan Rossi, John D Pfeifer
J Pathol Inform
2011, 2:39 (24 August 2011)
DOI
:10.4103/2153-3539.84232
PMID
:21969920
Background:
Whole slide imaging (WSI) makes it possible to capture images of an entire histological slide. WSI has established roles in surgical pathology, including support of off-site frozen section interpretation, primary diagnosis, educational activities, and laboratory quality assurance (QA) activities. Analyses of the cost of WSI have traditionally been based solely on direct costs and diagnostic accuracy; however, these types of analyses largely ignore workflow and cost issues that arise as a result of redundancy, the need for additional staffing, and customized software development when WSI is integrated into routine diagnostic surgical pathology. The pre-scan, scan, and post-scan costs; quality control and QA costs; and IT process costs can be significant, and consequently, pathology groups can find it difficult to perform a realistic cost-benefit analysis of adding WSI to their practice.
Materials and Methods:
In this paper, we report a "value added" approach developed to guide our decisions regarding integration of WSI into surgical pathology practice. The approach focuses on specific operational measures (cost, time, and enhanced patient care) and practice settings (clinical, education, and research) to identify routine activities in which the addition of WSI can provide improvements.
Results:
When applied to our academic pathology group practice, the value added approach resulted in expanded and improved operations, as demonstrated by outcome based measures.
Conclusion:
A value added can be used to perform a realistic cost-benefit analysis of integrating WSI into routine surgical pathology practice.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (17) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
The accuracy of dynamic predictive autofocusing for whole slide imaging
Richard R McKay, Vipul A Baxi, Michael C Montalto
J Pathol Inform
2011, 2:38 (24 August 2011)
DOI
:10.4103/2153-3539.84231
PMID
:21969919
Context:
Whole slide imaging (WSI) for digital pathology involves the rapid automated acquisition of multiple high-power fields from a microscope slide containing a tissue specimen. Capturing each field in the correct focal plane is essential to create high-quality digital images. Others have described a novel focusing method which reduces the number of focal planes required to generate accurate focus. However, this method was not applied dynamically in an automated WSI system under continuous motion.
Aims:
This report measures the accuracy of this method when applied in a rapid continuous scan mode using a dual sensor WSI system with interleaved acquisition of images.
Methods:
We acquired over 400 tiles in a "stop and go" scan mode, surveying the entire z depth in each tile and used this as ground truth. We compared this ground truth focal height to the focal height determined using a rapid 3-point focus algorithm applied dynamically in a continuous scanning mode.
Results:
Our data showed the average focal height error of 0.30 (±0.27) μm compared to ground truth, which is well within the system's depth of field. On a tile by tile assessment, approximately 95% of the tiles were within the system's depth of field. Further, this method was six times faster than acquiring tiles compared to the same method in a non-continuous scan mode.
Conclusions:
The data indicates that the method employed can yield a significant improvement in scan speed while maintaining highly accurate autofocusing.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (5) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Original Article:
Automated vector selection of SIVQ and parallel computing integration MATLAB
TM
: Innovations supporting large-scale and high-throughput image analysis studies
Jerome Cheng, Jason Hipp, James Monaco, David R Lucas, Anant Madabhushi, Ulysses J Balis
J Pathol Inform
2011, 2:37 (13 August 2011)
DOI
:10.4103/2153-3539.83752
PMID
:21886893
Introduction:
Spatially invariant vector quantization (SIVQ) is a texture and color-based image matching algorithm that queries the image space through the use of ring vectors. In prior studies, the selection of one or more optimal vectors for a particular feature of interest required a manual process, with the user initially stochastically selecting candidate vectors and subsequently testing them upon other regions of the image to verify the vector's sensitivity and specificity properties (typically by reviewing a resultant heat map). In carrying out the prior efforts, the SIVQ algorithm was noted to exhibit highly scalable computational properties, where each region of analysis can take place independently of others, making a compelling case for the exploration of its deployment on high-throughput computing platforms, with the hypothesis that such an exercise will result in performance gains that scale linearly with increasing processor count.
Methods:
An automated process was developed for the selection of optimal ring vectors to serve as the predicate matching operator in defining histopathological features of interest. Briefly, candidate vectors were generated from every possible coordinate origin within a user-defined vector selection area (VSA) and subsequently compared against user-identified positive and negative "ground truth" regions on the same image. Each vector from the VSA was assessed for its goodness-of-fit to both the positive and negative areas via the use of the receiver operating characteristic (ROC) transfer function, with each assessment resulting in an associated area-under-the-curve (AUC) figure of merit.
Results:
Use of the above-mentioned automated vector selection process was demonstrated in two cases of use: First, to identify malignant colonic epithelium, and second, to identify soft tissue sarcoma. For both examples, a very satisfactory optimized vector was identified, as defined by the AUC metric. Finally, as an additional effort directed towards attaining high-throughput capability for the SIVQ algorithm, we demonstrated the successful incorporation of it with the MATrix LABoratory (MATLAB
TM
) application interface.
Conclusion:
The SIVQ algorithm is suitable for automated vector selection settings and high throughput computation.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Review Article:
Review of the current state of whole slide imaging in pathology
Liron Pantanowitz, Paul N Valenstein, Andrew J Evans, Keith J Kaplan, John D Pfeifer, David C Wilbur, Laura C Collins, Terence J Colgan
J Pathol Inform
2011, 2:36 (13 August 2011)
DOI
:10.4103/2153-3539.83746
PMID
:21886892
Whole slide imaging (WSI), or "virtual" microscopy, involves the scanning (digitization) of glass slides to produce "digital slides". WSI has been advocated for diagnostic, educational and research purposes. When used for remote frozen section diagnosis, WSI requires a thorough implementation period coupled with trained support personnel. Adoption of WSI for rendering pathologic diagnoses on a routine basis has been shown to be successful in only a few "niche" applications. Wider adoption will most likely require full integration with the laboratory information system, continuous automated scanning, high-bandwidth connectivity, massive storage capacity, and more intuitive user interfaces. Nevertheless, WSI has been reported to enhance specific pathology practices, such as scanning slides received in consultation or of legal cases, of slides to be used for patient care conferences, for quality assurance purposes, to retain records of slides to be sent out or destroyed by ancillary testing, and for performing digital image analysis. In addition to technical issues, regulatory and validation requirements related to WSI have yet to be adequately addressed. Although limited validation studies have been published using WSI there are currently no standard guidelines for validating WSI for diagnostic use in the clinical laboratory. This review addresses the current status of WSI in pathology related to regulation and validation, the provision of remote and routine pathologic diagnoses, educational uses, implementation issues, and the cost-benefit analysis of adopting WSI in routine clinical practice.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (75) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Review Article:
Computerized provider order entry in the clinical laboratory
Jason M Baron, Anand S Dighe
J Pathol Inform
2011, 2:35 (13 August 2011)
DOI
:10.4103/2153-3539.83740
PMID
:21886891
Clinicians have traditionally ordered laboratory tests using paper-based orders and requisitions. However, paper orders are becoming increasingly incompatible with the complexities, challenges, and resource constraints of our modern healthcare systems and are being replaced by electronic order entry systems. Electronic systems that allow direct provider input of diagnostic testing or medication orders into a computer system are known as Computerized Provider Order Entry (CPOE) systems. Adoption of laboratory CPOE systems may offer institutions many benefits, including reduced test turnaround time, improved test utilization, and better adherence to practice guidelines. In this review, we outline the functionality of various CPOE implementations, review the reported benefits, and discuss strategies for using CPOE to improve the test ordering process. Further, we discuss barriers to the implementation of CPOE systems that have prevented their more widespread adoption.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (16) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Review Article:
A review of radio frequency identification technology for the anatomic pathology or biorepository laboratory: Much promise, some progress, and more work needed
Jerry J Lou, Gary Andrechak, Michael Riben, William H Yong
J Pathol Inform
2011, 2:34 (13 August 2011)
DOI
:10.4103/2153-3539.83738
PMID
:21886890
Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and biorepository laboratories could avoid or mitigate the "islands of data" dilemma presented by barcode usage where there are innumerable standards and a consequent paucity of hardware or software "plug and play" interoperability. Work remains to be done to establish the durability and appropriate shielding of individual tag types for use in harsh laboratory environmental conditions, and for long-term archival storage. Finally, given the requirements for long-term storage of biospecimen assets, consideration should be given to ways of mitigating data isolation due to eventual technological obsolescence of a particular RFID technology or software.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (10) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
|
Feedback
|
Disclaimer
|
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010