Contact us
|
Home
|
Login
| Users Online: 366
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
March
[
1
]
January
[
10
]
2021
December
[
7
]
November
[
9
]
September
[
8
]
August
[
2
]
July
[
1
]
June
[
4
]
May
[
3
]
April
[
4
]
March
[
7
]
February
[
3
]
January
[
6
]
2020
December
[
2
]
November
[
5
]
October
[
3
]
September
[
2
]
August
[
8
]
July
[
4
]
June
[
2
]
May
[
1
]
April
[
3
]
March
[
3
]
February
[
6
]
January
[
1
]
2019
December
[
6
]
November
[
4
]
September
[
4
]
August
[
3
]
July
[
6
]
June
[
1
]
May
[
2
]
April
[
6
]
March
[
3
]
February
[
4
]
January
[
2
]
2018
December
[
10
]
November
[
4
]
October
[
3
]
September
[
4
]
August
[
1
]
July
[
3
]
June
[
5
]
May
[
4
]
April
[
10
]
March
[
2
]
February
[
4
]
2017
December
[
5
]
November
[
4
]
October
[
3
]
September
[
9
]
July
[
5
]
June
[
2
]
May
[
4
]
April
[
6
]
March
[
6
]
February
[
7
]
2016
December
[
7
]
November
[
5
]
October
[
3
]
September
[
7
]
August
[
1
]
July
[
7
]
May
[
8
]
April
[
7
]
March
[
4
]
February
[
2
]
January
[
5
]
2015
November
[
4
]
October
[
5
]
September
[
5
]
August
[
4
]
July
[
3
]
June
[
19
]
May
[
5
]
April
[
1
]
March
[
5
]
February
[
9
]
January
[
3
]
2014
November
[
2
]
October
[
5
]
September
[
4
]
August
[
6
]
July
[
8
]
June
[
1
]
May
[
3
]
March
[
8
]
February
[
3
]
January
[
4
]
2013
December
[
5
]
November
[
2
]
October
[
4
]
September
[
4
]
August
[
3
]
July
[
3
]
June
[
5
]
May
[
7
]
March
[
18
]
February
[
1
]
January
[
1
]
2012
December
[
6
]
November
[
1
]
October
[
4
]
September
[
4
]
August
[
7
]
July
[
2
]
June
[
1
]
May
[
2
]
April
[
7
]
March
[
6
]
February
[
7
]
January
[
13
]
2011
December
[
3
]
November
[
1
]
October
[
7
]
August
[
9
]
July
[
3
]
June
[
7
]
May
[
3
]
March
[
6
]
February
[
8
]
January
[
6
]
2010
December
[
4
]
November
[
1
]
October
[
6
]
September
[
1
]
August
[
6
]
July
[
6
]
May
[
5
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Book Review
|
Commentary
|
Editorials
|
Original Articles
|
Research Article
|
Review Articles
|
Symposium - Original Articles
|
Symposium - Original Research
|
Technical Note
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Original Article:
Extracting laboratory test information from biomedical text
Yanna Shen Kang, Mehmet Kayaalp
J Pathol Inform
2013, 4:23 (31 August 2013)
DOI
:10.4103/2153-3539.117450
PMID
:24083058
Background:
No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices.
Methods:
The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively.
Results:
Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and
F
-measure. Its high recall performance was statistically significant on analyte information extraction.
Conclusions:
Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Technical note:
Eliminating tissue-fold artifacts in histopathological whole-slide images for improved image-based prediction of cancer grade
Sonal Kothari, John H Phan, May D Wang
J Pathol Inform
2013, 4:22 (31 August 2013)
DOI
:10.4103/2153-3539.117448
PMID
:24083057
Background:
Analysis of tissue biopsy whole-slide images (WSIs) depends on effective detection and elimination of image artifacts. We present a novel method to detect tissue-fold artifacts in histopathological WSIs. We also study the effect of tissue folds on image features and prediction models.
Materials
and
Methods:
We use WSIs of samples from two cancer endpoints - kidney clear cell carcinoma (KiCa) and ovarian serous adenocarcinoma (OvCa) - publicly available from The Cancer Genome Atlas. We detect tissue folds in low-resolution WSIs using color properties and two adaptive connectivity-based thresholds. We optimize and validate our tissue-fold detection method using 105 manually annotated WSIs from both cancer endpoints. In addition to detecting tissue folds, we extract 461 image features from the high-resolution WSIs for all samples. We use the rank-sum test to find image features that are statistically different among features extracted from the same set of WSIs with and without folds. We then use features that are affected by tissue folds to develop models for predicting cancer grades.
Results:
When compared to the ground truth, our method detects tissue folds in KiCa with 0.50 adjusted Rand index (ARI), 0.77 average true rate (ATR), 0.55 true positive rate (TPR), and 0.98 true negative rate (TNR); and in OvCa with 0.40 ARI, 0.73 ATR, 0.47 TPR, and 0.98 TNR. Compared to two other methods, our method is more accurate in terms of ARI and ATR. We found that 53 and 30 image features were significantly affected by the presence of tissue-fold artifacts (detected using our method) in OvCa and KiCa, respectively. After eliminating tissue folds, the performance of cancer-grade prediction models improved by 5% and 1% in OvCa and KiCa, respectively.
Conclusion:
The proposed connectivity-based method is more effective in detecting tissue folds compared to other methods. Reducing tissue-fold artifacts will increase the performance of cancer-grade prediction models.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (10) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Review Article:
Relationship between magnification and resolution in digital pathology systems
Tiffany L Sellaro, Robert Filkins, Chelsea Hoffman, Jeffrey L Fine, Jon Ho, Anil V Parwani, Liron Pantanowitz, Michael Montalto
J Pathol Inform
2013, 4:21 (22 August 2013)
DOI
:10.4103/2153-3539.116866
PMID
:24083056
Many pathology laboratories are implementing digital pathology systems. The image resolution and scanning (digitization) magnification can vary greatly between these digital pathology systems. In addition, when digital images are compared with viewing images using a microscope, the cellular features can vary in size. This article highlights differences in magnification and resolution between the conventional microscopes and the digital pathology systems. As more pathologists adopt digital pathology, it is important that they understand these differences and how they ultimately translate into what the pathologist can see and how this may impact their overall viewing experience.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (20) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010