Contact us
|
Home
|
Login
| Users Online: 287
Feedback
Subscribe
Advertise
Search
Advanced Search
Month wise articles
Figures next to the month indicate the number of articles in that month
2022
January
[
3
]
2021
November
[
2
]
September
[
3
]
August
[
1
]
June
[
2
]
January
[
1
]
2020
November
[
3
]
August
[
1
]
July
[
1
]
May
[
1
]
February
[
1
]
2019
December
[
2
]
September
[
1
]
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
April
[
1
]
March
[
1
]
February
[
2
]
2018
December
[
4
]
November
[
1
]
August
[
1
]
July
[
1
]
May
[
1
]
2017
October
[
1
]
September
[
3
]
June
[
1
]
May
[
1
]
March
[
1
]
February
[
1
]
2016
April
[
1
]
March
[
1
]
January
[
2
]
2015
October
[
3
]
September
[
3
]
June
[
4
]
March
[
2
]
January
[
1
]
2014
October
[
2
]
September
[
2
]
August
[
2
]
July
[
1
]
June
[
1
]
May
[
1
]
March
[
1
]
January
[
2
]
2013
December
[
2
]
November
[
1
]
July
[
1
]
June
[
1
]
March
[
2
]
2012
December
[
1
]
September
[
3
]
August
[
1
]
July
[
1
]
April
[
3
]
March
[
1
]
February
[
1
]
2011
August
[
2
]
July
[
2
]
June
[
1
]
May
[
1
]
March
[
2
]
January
[
1
]
2010
October
[
3
]
» Articles published in the past year
To view other articles click corresponding year from the navigation links on the left side.
All
|
Abstracts
|
Book Review
|
Brief Report
|
Commentary
|
Editorial
|
Editorials
|
Guidelines
|
Original Article
|
Original Articles
|
Research Article
|
Review Articles
|
Symposium
|
Technical Note
|
View Point
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
Research Article:
Can digital pathology result in cost savings? A financial projection for digital pathology implementation at a large integrated health care organization
Jonhan Ho, Stefan M Ahlers, Curtis Stratman, Orly Aridor, Liron Pantanowitz, Jeffrey L Fine, John A Kuzmishin, Michael C Montalto, Anil V Parwani
J Pathol Inform
2014, 5:33 (28 August 2014)
DOI
:10.4103/2153-3539.139714
PMID
:25250191
Background:
Digital pathology offers potential improvements in workflow and interpretive accuracy. Although currently digital pathology is commonly used for research and education, its clinical use has been limited to niche applications such as frozen sections and remote second opinion consultations. This is mainly due to regulatory hurdles, but also to a dearth of data supporting a positive economic cost-benefit. Large scale adoption of digital pathology and the integration of digital slides into the routine anatomic/surgical pathology "slide less" clinical workflow will occur only if digital pathology will offer a quantifiable benefit, which could come in the form of more efficient and/or higher quality care.
Aim:
As a large academic-based health care organization expecting to adopt digital pathology for primary diagnosis upon its regulatory approval, our institution estimated potential operational cost savings offered by the implementation of an enterprise-wide digital pathology system (DPS).
Methods:
Projected cost savings were calculated for the first 5 years following implementation of a DPS based on operational data collected from the pathology department. Projected savings were based on two factors: (1) Productivity and lab consolidation savings; and (2) avoided treatment costs due to improvements in the accuracy of cancer diagnoses among nonsubspecialty pathologists. Detailed analyses of incremental treatment costs due to interpretive errors, resulting in either a false positive or false negative diagnosis, was performed for melanoma and breast cancer and extrapolated to 10 other common cancers.
Results:
When phased in over 5-years, total cost savings based on anticipated improvements in pathology productivity and histology lab consolidation were estimated at $12.4 million for an institution with 219,000 annual accessions. The main contributing factors to these savings were gains in pathologist clinical full-time equivalent capacity impacted by improved pathologist productivity and workload distribution. Expanding the current localized specialty sign-out model to an enterprise-wide shared general/subspecialist sign-out model could potentially reduce costs of incorrect treatment by $5.4 million. These calculations were based on annual over and under treatment costs for breast cancer and melanoma estimated to be approximately $26,000 and $11,000/case, respectively, and extrapolated to $21,500/case for other cancer types.
Conclusions:
The projected 5-year total cost savings for our large academic-based health care organization upon fully implementing a DPS was approximately $18 million. If the costs of digital pathology acquisition and implementation do not exceed this value, the return on investment becomes attractive to hospital administrators. Furthermore, improved patient outcome enabled by this technology strengthens the argument supporting adoption of an enterprise-wide DPS.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (40) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Research Article:
Automated quantification of aligned collagen for human breast carcinoma prognosis
Jeremy S Bredfeldt, Yuming Liu, Matthew W Conklin, Patricia J Keely, Thomas R Mackie, Kevin W Eliceiri
J Pathol Inform
2014, 5:28 (28 August 2014)
DOI
:10.4103/2153-3539.139707
PMID
:25250186
Background:
Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts.
Methods:
Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries.
Results:
Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction.
Conclusion:
These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (94) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Sitemap
|
What's New
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© Journal of Pathology Informatics | Published by Wolters Kluwer -
Medknow
Online since 10
th
March, 2010