Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 194  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Application of Big Data Technology for COVID-19 Prevention and Control in China: Lessons and Recommendations
Jun Wu,Jian Wang,Stephen Nicholas,Elizabeth Maitland,Qiuyan Fan
Journal of Medical Internet Research.2020;22(10)e21980
[DOI]
2Application of Big Data Technology for COVID-19 Prevention and Control in China: Lessons and Recommendations
Eduardo Romero Castro,Germán Corredor,Cheng Lu,Anant Madabhushi,Xiangxue Wang,Vamsidhar Velcheti,Metin N. Gurcan,John E. Tomaszewski
Journal of Medical Internet Research.2018;22(10)26
[DOI]
3Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists
Yun Liu,Timo Kohlberger,Mohammad Norouzi,George E. Dahl,Jenny L. Smith,Arash Mohtashamian,Niels Olson,Lily H. Peng,Jason D. Hipp,Martin C. Stumpe
Archives of Pathology & Laboratory Medicine.2019;143(7)859
[DOI]
4Blinded Visual Scoring of Images Using the Freely-available Software Blinder
Steven Cothren,Joel Meyer,Jessica Hartman
BIO-PROTOCOL.2018;8(23)859
[DOI]
5A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
Jeffrey J. Nirschl,Andrew Janowczyk,Eliot G. Peyster,Renee Frank,Kenneth B. Margulies,Michael D. Feldman,Anant Madabhushi,Alison Marsden
PLOS ONE.2018;13(4)e0192726
[DOI]
6A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
Xiangxue Wang,Vamsidhar Velcheti,Pranjal Vaidya,Kaustav Bera,Anant Madabhushi,Arjun Khunger,Pradnya Patil,Humberto Choi,Metin N. Gurcan,John E. Tomaszewski
PLOS ONE.2018;13(4)21
[DOI]
7Fractal Neural Network: A new ensemble of fractal geometry and convolutional neural networks for the classification of histology images
Guilherme Freire Roberto,Alessandra Lumini,Leandro Alves Neves,Marcelo Zanchetta do Nascimento
Expert Systems with Applications.2021;166(4)114103
[DOI]
8Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images
Can Taylan Sari,Cigdem Gunduz-Demir
IEEE Transactions on Medical Imaging.2019;38(5)1139
[DOI]
9Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images
Zhihua Liu,Nadiya Abdukeyim,Chuanbo Yan
IEEE Transactions on Medical Imaging.2019;38(5)1280
[DOI]
10Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
Andrew Janowczyk,Anant Madabhushi
Journal of Pathology Informatics.2016;7(1)29
[DOI]
11Quantitative nuclear histomorphometric features are predictive of Oncotype DX risk categories in ductal carcinoma in situ: preliminary findings
Haojia Li,Jon Whitney,Kaustav Bera,Hannah Gilmore,Mangesh A. Thorat,Sunil Badve,Anant Madabhushi
Breast Cancer Research.2019;21(1)29
[DOI]
12Dealing with Lack of Training Data for Convolutional Neural Networks: The Case of Digital Pathology
Francesco Ponzio,Gianvito Urgese,Elisa Ficarra,Santa Di Cataldo
Electronics.2019;8(3)256
[DOI]
13Generative Deep Learning in Digital Pathology Workflows
David Morrison,David Harris-Birtill,Peter D. Caie
The American Journal of Pathology.2021;8(3)256
[DOI]
14Artificial Intelligence and Digital Microscopy Applications in Diagnostic Hematopathology
Hanadi El El Achi,Joseph D. Khoury
Cancers.2020;12(4)797
[DOI]
15Deep learning nuclei detection: A simple approach can deliver state-of-the-art results
Henning Höfener,André Homeyer,Nick Weiss,Jesper Molin,Claes F. Lundström,Horst K. Hahn
Computerized Medical Imaging and Graphics.2018;70(4)43
[DOI]
16Deep learning nuclei detection: A simple approach can deliver state-of-the-art results
Francesco Ponzio,Enrico Macii,Elisa Ficarra,Santa Di Cataldo
Computerized Medical Imaging and Graphics.2019;1024(4)114
[DOI]
17Cell Image Classification: A Comparative Overview
Mohammad Shifat-E-Rabbi,Xuwang Yin,Cailey E. Fitzgerald,Gustavo K. Rohde
Cytometry Part A.2020;97(4)347
[DOI]
18Next generation pathology: artificial intelligence enhances histopathology practice
Balazs Acs,Johan Hartman
The Journal of Pathology.2020;250(1)7
[DOI]
19Environmental properties of cells improve machine learning-based phenotype recognition accuracy
Timea Toth,Tamas Balassa,Norbert Bara,Ferenc Kovacs,Andras Kriston,Csaba Molnar,Lajos Haracska,Farkas Sukosd,Peter Horvath
Scientific Reports.2018;8(1)7
[DOI]
20Automatic Detection of Invasive Ductal Carcinoma Based on the Fusion of Multi-Scale Residual Convolutional Neural Network and SVM
Jianfei Zhang,Xiaoyan Guo,Bo Wang,Wensheng Cui
IEEE Access.2021;9(1)40308
[DOI]
21Automatic Detection of Invasive Ductal Carcinoma Based on the Fusion of Multi-Scale Residual Convolutional Neural Network and SVM
Md Shamim Reza,Jinwen Ma
IEEE Access.2018;9(1)619
[DOI]
22Feasibility of fully automated classification of whole slide images based on deep learning
Kyung-Ok Cho,Sung Hak Lee,Hyun-Jong Jang
The Korean Journal of Physiology & Pharmacology.2020;24(1)89
[DOI]
23Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks
Xipeng Pan,Dengxian Yang,Lingqiao Li,Zhenbing Liu,Huihua Yang,Zhiwei Cao,Yubei He,Zhen Ma,Yiyi Chen
World Wide Web.2018;21(6)1721
[DOI]
24Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends
Naira Elazab,Hassan Soliman,Shaker El-Sappagh,S. M. Riazul Islam,Mohammed Elmogy
Mathematics.2020;8(11)1863
[DOI]
25Computationally Derived Image Signature of Stromal Morphology Is Prognostic of Prostate Cancer Recurrence Following Prostatectomy in African American Patients
Hersh K. Bhargava,Patrick Leo,Robin Elliott,Andrew Janowczyk,Jon Whitney,Sanjay Gupta,Pingfu Fu,Kosj Yamoah,Francesca Khani,Brian D. Robinson,Timothy R. Rebbeck,Michael Feldman,Priti Lal,Anant Madabhushi
Clinical Cancer Research.2020;26(8)1915
[DOI]
26DICOM Format and Protocol Standardization—A Core Requirement for Digital Pathology Success
David A. Clunie
Toxicologic Pathology.2021;49(4)738
[DOI]
27DICOM Format and Protocol Standardization—A Core Requirement for Digital Pathology Success
Nassima Dif,Zakaria Elberrichi
Toxicologic Pathology.2020;12090(4)279
[DOI]
28DICOM Format and Protocol Standardization—A Core Requirement for Digital Pathology Success
Jiamei Sun,Alexander Binder
Toxicologic Pathology.2017;12090(4)43
[DOI]
29Open access image repositories: high-quality data to enable machine learning research
F. Prior,J. Almeida,P. Kathiravelu,T. Kurc,K. Smith,T.J. Fitzgerald,J. Saltz
Clinical Radiology.2020;75(1)7
[DOI]
30Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care
Ugljesa Djuric,Gelareh Zadeh,Kenneth Aldape,Phedias Diamandis
npj Precision Oncology.2017;1(1)7
[DOI]
31Deep Learning Makes Its Way to the Clinical Laboratory
Ronald Jackups
Clinical Chemistry.2017;63(12)1790
[DOI]
32Deep Learning Makes Its Way to the Clinical Laboratory
G. Kalyani,B. Janakiramaiah
Clinical Chemistry.2021;63(12)241
[DOI]
33Intelligence artificielle : quel avenir en anatomie pathologique ?
Ryad Zemouri,Christine Devalland,Séverine Valmary-Degano,Noureddine Zerhouni
Annales de Pathologie.2019;39(2)119
[DOI]
34Intelligence artificielle : quel avenir en anatomie pathologique ?
Scotty Kwok
Annales de Pathologie.2018;10882(2)931
[DOI]
35Emergence of “Big Data” and Its Potential and Current Limitations in Medical Imaging
Martin J. Yaffe
Seminars in Nuclear Medicine.2019;49(2)94
[DOI]
36A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis
Yixin Li,Chen Li,Xiaoyan Li,Kai Wang,Md Mamunur Rahaman,Changhao Sun,Hao Chen,Xinran Wu,Hong Zhang,Qian Wang
Archives of Computational Methods in Engineering.2021;49(2)94
[DOI]
37A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis
Chaoyang Yan,Jun Xu,Jiawei Xie,Chengfei Cai,Haoda Lu
Archives of Computational Methods in Engineering.2020;49(2)254
[DOI]
38A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis
Jeremiah W. Johnson
Archives of Computational Methods in Engineering.2021;1290(2)113
[DOI]
39Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques
Xiaohong W. Gao,Yu Qian
Molecular Pharmaceutics.2018;15(10)4326
[DOI]
40Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)
Hassaan Majeed,Tan Huu Nguyen,Mikhail Eugene Kandel,Andre Kajdacsy-Balla,Gabriel Popescu
Scientific Reports.2018;8(1)4326
[DOI]
41Applications of machine learning in drug discovery and development
Jessica Vamathevan,Dominic Clark,Paul Czodrowski,Ian Dunham,Edgardo Ferran,George Lee,Bin Li,Anant Madabhushi,Parantu Shah,Michaela Spitzer,Shanrong Zhao
Nature Reviews Drug Discovery.2019;18(6)463
[DOI]
42Applications of machine learning in drug discovery and development
Angel A. Cruz Roa,Anant Madabhushi,Fabian Cano,Eduardo Romero,Natasha Lepore,Jorge Brieva
Nature Reviews Drug Discovery.2018;18(6)39
[DOI]
43An experimental study on classification of thyroid histopathology images using transfer learning
Vijaya Gajanan Buddhavarapu,Angel Arul Jothi J
Pattern Recognition Letters.2020;140(6)1
[DOI]
44Quantitative neurotoxicology: Potential role of artificial intelligence/deep learning approach
Anshul Srivastava,Joseph P. Hanig
Journal of Applied Toxicology.2020;140(6)1
[DOI]
45Quantitative neurotoxicology: Potential role of artificial intelligence/deep learning approach
Xiaohong W. Gao,Yu Qian,Barjor Gimi,Andrzej Krol
Journal of Applied Toxicology.2018;140(6)93
[DOI]
46A financial statement fraud model based on synthesized attribute selection and a dataset with missing values and imbalanced classes
Ching-Hsue Cheng,Yung-Fu Kao,Hsien-Ping Lin
Applied Soft Computing.2021;108(6)107487
[DOI]
47Learning to detect lymphocytes in immunohistochemistry with deep learning
Zaneta Swiderska-Chadaj,Hans Pinckaers,Mart van Rijthoven,Maschenka Balkenhol,Margarita Melnikova,Oscar Geessink,Quirine Manson,Mark Sherman,Antonio Polonia,Jeremy Parry,Mustapha Abubakar,Geert Litjens,Jeroen van der Laak,Francesco Ciompi
Medical Image Analysis.2019;58(6)101547
[DOI]
48MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
Ziba Gandomkar,Patrick C. Brennan,Claudia Mello-Thoms
Artificial Intelligence in Medicine.2018;88(6)14
[DOI]
49MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
Kun Fan,Shibo Wen,Zhuofu Deng
Artificial Intelligence in Medicine.2019;145(6)137
[DOI]
50Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology
Sebastian Otálora,Manfredo Atzori,Vincent Andrearczyk,Amjad Khan,Henning Müller
Frontiers in Bioengineering and Biotechnology.2019;7(6)137
[DOI]
51Deep Learning Model for Cell Nuclei Segmentation and Lymphocyte Identification in Whole Slide Histology Images
Elzbieta Budginaite,Mindaugas Morkunas,Arvydas Laurinavicius,Povilas Treigys
Informatica.2021;7(6)23
[DOI]
52Sliding window based deep ensemble system for breast cancer classification
Amin Alqudah,Ali Mohammad Alqudah
Journal of Medical Engineering & Technology.2021;45(4)313
[DOI]
53Systems biology primer: the basic methods and approaches
Iman Tavassoly,Joseph Goldfarb,Ravi Iyengar
Essays in Biochemistry.2018;62(4)487
[DOI]
54Retrieval From and Understanding of Large-Scale Multi-modal Medical Datasets: A Review
Henning Muller,Devrim Unay
IEEE Transactions on Multimedia.2017;19(9)2093
[DOI]
55Retrieval From and Understanding of Large-Scale Multi-modal Medical Datasets: A Review
Hui Qu,Zhennan Yan,Gregory M. Riedlinger,Subhajyoti De,Dimitris N. Metaxas
IEEE Transactions on Multimedia.2019;11764(9)378
[DOI]
56Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
Michel E. Vandenberghe,Marietta L. J. Scott,Paul W. Scorer,Magnus Söderberg,Denis Balcerzak,Craig Barker
Scientific Reports.2017;7(1)378
[DOI]
57Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
Aman Rana,Gregory Yauney,Lawrence C. Wong,Otkrist Gupta,Ali Muftu,Pratik Shah
Scientific Reports.2017;7(1)144
[DOI]
58Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
Vijaya B. Kolachalama,Priyamvada Singh,Christopher Q. Lin,Dan Mun,Mostafa E. Belghasem,Joel M. Henderson,Jean M. Francis,David J. Salant,Vipul C. Chitalia
Kidney International Reports.2018;3(2)464
[DOI]
59Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
Cheng Lu,Can Koyuncu,Andrew Janowczyk,Christopher C. Griffith,Deborah J. Chute,James S. Lewis,Anant Madabhushi
Kidney International Reports.2021;3(2)137
[DOI]
60Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
Erwan Zerhouni,David Lanyi,Matheus Viana,Maria Gabrani
Kidney International Reports.2017;3(2)924
[DOI]
61Role of deep learning in infant brain MRI analysis
Mahmoud Mostapha,Martin Styner
Magnetic Resonance Imaging.2019;64(2)171
[DOI]
62An Ensemble Approach for Classification of Breast Histopathology Images
P. Dhivya,S. Vasuki
IETE Journal of Research.2019;64(2)1
[DOI]
63An Ensemble Approach for Classification of Breast Histopathology Images
Mark K. Hinders
IETE Journal of Research.2020;64(2)1
[DOI]
64An Ensemble Approach for Classification of Breast Histopathology Images
Adon Phillips,Iris Teo,Jochen Lang
IETE Journal of Research.2019;64(2)2738
[DOI]
65A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology
Neeraj Kumar,Ruchika Verma,Sanuj Sharma,Surabhi Bhargava,Abhishek Vahadane,Amit Sethi
IEEE Transactions on Medical Imaging.2017;36(7)1550
[DOI]
66Automated assessment of glomerulosclerosis and tubular atrophy using deep learning
Massimo Salvi,Alessandro Mogetta,Alessandro Gambella,Luca Molinaro,Antonella Barreca,Mauro Papotti,Filippo Molinari
Computerized Medical Imaging and Graphics.2021;90(7)101930
[DOI]
67Automated assessment of glomerulosclerosis and tubular atrophy using deep learning
Siddharth Samsi,Michael Jones,Jeremy Kepner,Albert Reuther
Computerized Medical Imaging and Graphics.2018;90(7)640
[DOI]
68A Review of Intrinsic Optical Imaging Serial Blockface Histology (ICI-SBH) for Whole Rodent Brain Imaging
Joël Lefebvre,Patrick Delafontaine-Martel,Frédéric Lesage
Photonics.2019;6(2)66
[DOI]
69Deep-learning approaches for Gleason grading of prostate biopsies
Anant Madabhushi,Michael D Feldman,Patrick Leo
The Lancet Oncology.2020;21(2)187
[DOI]
70Deep-learning approaches for Gleason grading of prostate biopsies
Joel Haskin Saltz,Rajarsi Gupta
The Lancet Oncology.2021;21(2)211
[DOI]
71Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal.2018;16(2)34
[DOI]
72Robust nuclei segmentation in histopathology using ASPPU-Net and boundary refinement
Tao Wan,Lei Zhao,Hongxiang Feng,Deyu Li,Chao Tong,Zengchang Qin
Neurocomputing.2020;408(2)144
[DOI]
73Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Louis J. Vaickus,Arief A. Suriawinata,Jason W. Wei,Xiaoying Liu
Cancer Cytopathology.2019;127(2)98
[DOI]
74Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Nabila Shawki,M. Golam Shadin,Tarek Elseify,Luke Jakielaszek,Tunde Farkas,Yuri Persidsky,Nirag Jhala,Iyad Obeid,Joseph Picone
Cancer Cytopathology.2020;127(2)69
[DOI]
75Enhancing Multi-tissue and Multi-scale Cell Nuclei Segmentation with Deep Metric Learning
Tomas Iesmantas,Agne Paulauskaite-Taraseviciene,Kristina Sutiene
Applied Sciences.2020;10(2)615
[DOI]
76Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software
Andres Moon,Geoffrey H. Smith,Jun Kong,Thomas E. Rogers,Carla L. Ellis,Alton B. “Brad” Farris
Virchows Archiv.2018;472(2)259
[DOI]
77Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software
V. Ajantha Devi,Anand Nayyar
Virchows Archiv.2021;908(2)1
[DOI]
78Fine-Tuning and training of densenet for histopathology image representation using TCGA diagnostic slides
Abtin Riasatian,Morteza Babaie,Danial Maleki,Shivam Kalra,Mojtaba Valipour,Sobhan Hemati,Manit Zaveri,Amir Safarpoor,Sobhan Shafiei,Mehdi Afshari,Maral Rasoolijaberi,Milad Sikaroudi,Mohd Adnan,Sultaan Shah,Charles Choi,Savvas Damaskinos,Clinton JV Campbell,Phedias Diamandis,Liron Pantanowitz,Hany Kashani,Ali Ghodsi,H.R. Tizhoosh
Medical Image Analysis.2021;70(2)102032
[DOI]
79Fine-Tuning and training of densenet for histopathology image representation using TCGA diagnostic slides
Francisco Perdigon Romero,An Tang,Samuel Kadoury
Medical Image Analysis.2019;70(2)1092
[DOI]
80MitosisNet: End-to-End Mitotic Cell Detection by Multi-Task Learning
Md Zahangir Alom,Theus Aspiras,Tarek M. Taha,T.J. Bowen,Vijayan K. Asari
IEEE Access.2020;8(2)68695
[DOI]
81Impact of pre-analytical variables on deep learning accuracy in histopathology
Andrew D Jones,John Paul Graff,Morgan Darrow,Alexander Borowsky,Kristin A Olson,Regina Gandour-Edwards,Ananya Datta Mitra,Dongguang Wei,Guofeng Gao,Blythe Durbin-Johnson,Hooman H Rashidi
Histopathology.2019;75(1)39
[DOI]
82Impact of pre-analytical variables on deep learning accuracy in histopathology
Anna Korzynska,Jakub Zak,Krzysztof Siemion,Lukasz Roszkowiak,Dorota Pijanowska
Histopathology.2020;1033(1)72
[DOI]
83Enhancing the Value of Histopathological Assessment of Allograft Biopsy Monitoring
Michelle A. Wood-Trageser,Andrew J. Lesniak,Anthony J. Demetris
Transplantation.2019;103(7)1306
[DOI]
84Direct Cellularity Estimation on Breast Cancer Histopathology Images Using Transfer Learning
Ziang Pei,Shuangliang Cao,Lijun Lu,Wufan Chen
Computational and Mathematical Methods in Medicine.2019;2019(7)1
[DOI]
85Direct Cellularity Estimation on Breast Cancer Histopathology Images Using Transfer Learning
Oscar Jimenez-del-Toro,Sebastian Otálora,Mats Andersson,Kristian Eurén,Martin Hedlund,Mikael Rousson,Henning Müller,Manfredo Atzori
Computational and Mathematical Methods in Medicine.2017;2019(7)281
[DOI]
86An Accurate and Fast Cardio-Views Classification System Based on Fused Deep Features and LSTM
Ahmed I. Shahin,Sultan Almotairi
IEEE Access.2020;8(7)135184
[DOI]
87The Impact of Artificial Intelligence on the Labor Market
Michael Webb
SSRN Electronic Journal.2019;8(7)135184
[DOI]
88The Impact of Artificial Intelligence on the Labor Market
Rucha Tambe,Sarang Mahajan,Urmil Shah,Mohit Agrawal,Bhushan Garware
SSRN Electronic Journal.2019;8(7)143
[DOI]
89Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Massimo Salvi,Filippo Molinari
BioMedical Engineering OnLine.2018;17(1)143
[DOI]
90Biomedical Image Processing and Classification
Luca Mesin
Electronics.2021;10(1)66
[DOI]
91Fluorescence-based quantification of nucleocytoplasmic transport
Joshua B. Kelley,Bryce M. Paschal
Methods.2019;157(1)106
[DOI]
92Fluorescence-based quantification of nucleocytoplasmic transport
Yoshinori Kabeya,Toshiya Iwamori,Sho Yonezawa,Yusuke Takeuchi,Hiroki Nakano,Yuhe Nagisa,Mariko Okubo,Michio Inoue,Reitaro Tokumasu,Issei Ozawa,Atsushi Takano,Ichizo Nishino
Methods.2019;157(1)1850
[DOI]
93Deep Learning in the Biomedical Applications: Recent and Future Status
Ryad Zemouri,Noureddine Zerhouni,Daniel Racoceanu
Applied Sciences.2019;9(8)1526
[DOI]
94Deep Learning in the Biomedical Applications: Recent and Future Status
Bruno Korbar,Andrea M. Olofson,Allen P. Miraflor,Catherine M. Nicka,Matthew A. Suriawinata,Lorenzo Torresani,Arief A. Suriawinata,Saeed Hassanpour
Applied Sciences.2017;9(8)821
[DOI]
95Deep Learning in the Biomedical Applications: Recent and Future Status
Sebastian Otálora,Manfredo Atzori,Vincent Andrearczyk,Henning Müller
Applied Sciences.2018;11039(8)148
[DOI]
96Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images
Lingqiao Li,Xipeng Pan,Huihua Yang,Zhenbing Liu,Yubei He,Zhongming Li,Yongxian Fan,Zhiwei Cao,Longhao Zhang
Multimedia Tools and Applications.2020;79(21-22)14509
[DOI]
97Automated and Manual Quantification of Tumour Cellularity in Digital Slides for Tumour Burden Assessment
Shazia Akbar,Mohammad Peikari,Sherine Salama,Azadeh Yazdan Panah,Sharon Nofech-Mozes,Anne L. Martel
Scientific Reports.2019;9(1)14509
[DOI]
98Automated and Manual Quantification of Tumour Cellularity in Digital Slides for Tumour Burden Assessment
Heang-Ping Chan,Ravi K. Samala,Lubomir M. Hadjiiski,Chuan Zhou
Scientific Reports.2020;1213(1)3
[DOI]
99Automated histologic diagnosis of CNS tumors with machine learning
Siri Sahib S Khalsa,Todd C Hollon,Arjun Adapa,Esteban Urias,Sudharsan Srinivasan,Neil Jairath,Julianne Szczepanski,Peter Ouillette,Sandra Camelo-Piragua,Daniel A Orringer
CNS Oncology.2020;9(2)CNS56
[DOI]
100Clinical Decision Support for Ovarian Carcinoma Subtype Classification: A Pilot Observer Study With Pathology Trainees
Marios A. Gavrielides,Meghan Miller,Ian S. Hagemann,Heba Abdelal,Zahra Alipour,Jie-Fu Chen,Behzad Salari,Lulu Sun,Huifang Zhou,Jeffrey D Seidman
Archives of Pathology & Laboratory Medicine.2020;144(7)869
[DOI]
101Clinical Decision Support for Ovarian Carcinoma Subtype Classification: A Pilot Observer Study With Pathology Trainees
Lipeng Xie,Chunming Li
Archives of Pathology & Laboratory Medicine.2018;144(7)129
[DOI]
102Clinical Decision Support for Ovarian Carcinoma Subtype Classification: A Pilot Observer Study With Pathology Trainees
Vaishnavi Subramanian,Weizhao Tang,Benjamin Chidester,Jian Ma,Minh N. Do
Archives of Pathology & Laboratory Medicine.2018;11071(7)245
[DOI]
103Clinical Decision Support for Ovarian Carcinoma Subtype Classification: A Pilot Observer Study With Pathology Trainees
Yilin Chen,Ming Li,Fang Hao,Weixia Han,Dan Niu,Chen Wang
Archives of Pathology & Laboratory Medicine.2020;11071(7)254
[DOI]
104Clinical Decision Support for Ovarian Carcinoma Subtype Classification: A Pilot Observer Study With Pathology Trainees
Chen Wang,Hong Bu,Ji Bao,Chunming Li
Archives of Pathology & Laboratory Medicine.2017;11071(7)865
[DOI]
105Quaternion Grassmann average network for learning representation of histopathological image
Jun Shi,Xiao Zheng,Jinjie Wu,Bangming Gong,Qi Zhang,Shihui Ying
Pattern Recognition.2019;89(7)67
[DOI]
106Quaternion Grassmann average network for learning representation of histopathological image
Sajid Javed,Muhammad Moazam Fraz,David Epstein,David Snead,Nasir M. Rajpoot
Pattern Recognition.2018;11039(7)120
[DOI]
107Quaternion Grassmann average network for learning representation of histopathological image
Thanawat Lodkaew,Kitsuchart Pasupa
Pattern Recognition.2020;1332(7)807
[DOI]
108Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients
Yong Won Jin,Shuo Jia,Ahmed Bilal Ashraf,Pingzhao Hu
Cancers.2020;12(10)2934
[DOI]
109Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients
Nicholas C. Cullen,Brian B. Avants
Cancers.2018;136(10)13
[DOI]
110Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients
Guofeng Lv,Ke Wen,Zheng Wu,Xu Jin,Hong An,Jie He
Cancers.2019;136(10)357
[DOI]
111Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
Gabriele Campanella,Matthew G. Hanna,Luke Geneslaw,Allen Miraflor,Vitor Werneck Krauss Silva,Klaus J. Busam,Edi Brogi,Victor E. Reuter,David S. Klimstra,Thomas J. Fuchs
Nature Medicine.2019;25(8)1301
[DOI]
112Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
Tuan D. Pham
Nature Medicine.2017;10262(8)524
[DOI]
113Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
Dorota Oszutowska–Mazurek,Oktawian Knap
Nature Medicine.2017;573(8)466
[DOI]
114Histopathological Image Retrieval Based on Asymmetric Residual Hash and DNA Coding
Shuli Cheng,Liejun Wang,Anyu Du
IEEE Access.2019;573(8)1
[DOI]
115Gland segmentation in prostate histopathological images
Malay Singh,Emarene Mationg Kalaw,Danilo Medina Giron,Kian-Tai Chong,Chew Lim Tan,Hwee Kuan Lee
Journal of Medical Imaging.2017;4(2)027501
[DOI]
116Supervised Image Classification by Scattering Transform with Application to Weed Detection in Culture Crops of High Density
Pejman Rasti,Ali Ahmad,Salma Samiei,Etienne Belin,David Rousseau
Remote Sensing.2019;11(3)249
[DOI]
117Supervised Image Classification by Scattering Transform with Application to Weed Detection in Culture Crops of High Density
Sébastien Besson,Roger Leigh,Melissa Linkert,Chris Allan,Jean-Marie Burel,Mark Carroll,David Gault,Riad Gozim,Simon Li,Dominik Lindner,Josh Moore,Will Moore,Petr Walczysko,Frances Wong,Jason R. Swedlow
Remote Sensing.2019;11435(3)3
[DOI]
118Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images
Jun Xu,Lei Gong,Guanhao Wang,Cheng Lu,Hannah Gilmore,Shaoting Zhang,Anant Madabhushi
Journal of Medical Imaging.2019;6(01)1
[DOI]
119Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images
Lipeng Xie,Jin Qi,Lili Pan,Samad Wali
Neurocomputing.2020;376(01)166
[DOI]
120A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification
Jiaqi Shao,Changwen Qu,Jianwei Li,Shujuan Peng
Sensors.2018;18(9)3039
[DOI]
121A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification
John E. Tomaszewski
Sensors.2021;18(9)237
[DOI]
122A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification
Matko Saric,Mladen Russo,Maja Stella,Marjan Sikora
Sensors.2019;18(9)1
[DOI]
123Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images
Georg Steinbuss,Mark Kriegsmann,Christiane Zgorzelski,Alexander Brobeil,Benjamin Goeppert,Sascha Dietrich,Gunhild Mechtersheimer,Katharina Kriegsmann
Cancers.2021;13(10)2419
[DOI]
124PAIP 2019: Liver cancer segmentation challenge
Yoo Jung Kim,Hyungjoon Jang,Kyoungbun Lee,Seongkeun Park,Sung-Gyu Min,Choyeon Hong,Jeong Hwan Park,Kanggeun Lee,Jisoo Kim,Wonjae Hong,Hyun Jung,Yanling Liu,Haran Rajkumar,Mahendra Khened,Ganapathy Krishnamurthi,Sen Yang,Xiyue Wang,Chang Hee Han,Jin Tae Kwak,Jianqiang Ma,Zhe Tang,Bahram Marami,Jack Zeineh,Zixu Zhao,Pheng-Ann Heng,Rüdiger Schmitz,Frederic Madesta,Thomas Rösch,Rene Werner,Jie Tian,Elodie Puybareau,Matteo Bovio,Xiufeng Zhang,Yifeng Zhu,Se Young Chun,Won-Ki Jeong,Peom Park,Jinwook Choi
Medical Image Analysis.2021;67(10)101854
[DOI]
125PAIP 2019: Liver cancer segmentation challenge
Alexander Effland,Michael Hölzel,Teresa Klatzer,Erich Kobler,Jennifer Landsberg,Leonie Neuhäuser,Thomas Pock,Martin Rumpf
Medical Image Analysis.2018;67(10)334
[DOI]
126A systematic study of the class imbalance problem in convolutional neural networks
Mateusz Buda,Atsuto Maki,Maciej A. Mazurowski
Neural Networks.2018;106(10)249
[DOI]
127A systematic study of the class imbalance problem in convolutional neural networks
Nilanjana Dutta Roy,Arindam Biswas,Souvik Ghosh,Rajarshi Lahiri,Abhijit Mitra,Manabendra Dutta Choudhury
Neural Networks.2019;11942(10)32
[DOI]
128Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine
Kipp W. Johnson,Khader Shameer,Benjamin S. Glicksberg,Ben Readhead,Partho P. Sengupta,Johan L.M. Björkegren,Jason C. Kovacic,Joel T. Dudley
JACC: Basic to Translational Science.2017;2(3)311
[DOI]
129A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues
Mu Yang,Karolina Nurzynska,Ann E. Walts,Arkadiusz Gertych
Computerized Medical Imaging and Graphics.2020;84(3)101752
[DOI]
130A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues
Xipeng Pan,Lingqiao Li,Huihua Yang,Zhenbing Liu,Yubei He,Zhongming Li,Yongxian Fan,Zhiwei Cao,Longhao Zhang
Computerized Medical Imaging and Graphics.2020;810(3)85
[DOI]
131Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design
Eugene Lin,Chieh-Hsin Lin,Hsien-Yuan Lane
Molecules.2020;25(14)3250
[DOI]
132Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design
Dimitris Metaxas,Hui Qu,Gregory Riedlinger,Pengxiang Wu,Qiaoying Huang,Jingru Yi,Subhajyoti De
Molecules.2021;25(14)185
[DOI]
133Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design
Chonho Lee,Seiya Murata,Kobo Ishigaki,Susumu Date
Molecules.2017;25(14)181
[DOI]
134Classification of Invasive Ductal Carcinoma from histopathology breast cancer images using Stacked Generalized Ensemble
Deepika Kumar,Usha Batra
Journal of Intelligent & Fuzzy Systems.2021;40(3)4919
[DOI]
135Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography
Yi Wang,Hao Zhang,Kum Ju Chae,Younhee Choi,Gong Yong Jin,Seok-Bum Ko
Multidimensional Systems and Signal Processing.2020;31(3)1163
[DOI]
136Pathology Image Analysis Using Segmentation Deep Learning Algorithms
Shidan Wang,Donghan M. Yang,Ruichen Rong,Xiaowei Zhan,Guanghua Xiao
The American Journal of Pathology.2019;189(9)1686
[DOI]
137Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study
Massimo Salvi,Filippo Molinari,Selina Iussich,Luisa Vera Muscatello,Luca Pazzini,Silvia Benali,Barbara Banco,Francesca Abramo,Raffaella De Maria,Luca Aresu
Frontiers in Veterinary Science.2021;8(9)1686
[DOI]
138Artificial Intelligence Tools for Refining Lung Cancer Screening
J. Luis Espinoza,Le Thanh Dong
Journal of Clinical Medicine.2020;9(12)3860
[DOI]
139Artificial Intelligence Tools for Refining Lung Cancer Screening
Rajaram Anantharaman,Matthew Velazquez,Yugyung Lee
Journal of Clinical Medicine.2018;9(12)2197
[DOI]
140A computer-aided diagnosis system for differentiation and delineation of malignant regions on whole-slide prostate histopathology image using spatial statistics and multidimensional DenseNet
Chiao-Min Chen,Yao-Sian Huang,Pei-Wei Fang,Cher-Wei Liang,Ruey-Feng Chang
Medical Physics.2020;47(3)1021
[DOI]
141Policy Implications of Artificial Intelligence and Machine Learning in Diabetes Management
David T. Broome,C. Beau Hilton,Neil Mehta
Current Diabetes Reports.2020;20(2)1021
[DOI]
142Epithelium segmentation and automated Gleason grading of prostate cancer via deep learning in label-free multiphoton microscopic images
Qinqin Yang,Zhexin Xu,Chenxi Liao,Jianyong Cai,Ying Huang,Hong Chen,Xuan Tao,Zheng Huang,Jianxin Chen,Jiyang Dong,Xiaoqin Zhu
Journal of Biophotonics.2020;13(2)1021
[DOI]
143Deep Learning for Whole Slide Image Analysis: An Overview
Neofytos Dimitriou,Ognjen Arandjelovic,Peter D. Caie
Frontiers in Medicine.2019;6(2)1021
[DOI]
144FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer
M. M. Fraz,S. A. Khurram,S. Graham,M. Shaban,M. Hassan,A. Loya,N. M. Rajpoot
Neural Computing and Applications.2020;32(14)9915
[DOI]
145Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning
F. Klauschen,K.-R. Müller,A. Binder,M. Bockmayr,M. Hägele,P. Seegerer,S. Wienert,G. Pruneri,S. de Maria,S. Badve,S. Michiels,T.O. Nielsen,S. Adams,P. Savas,F. Symmans,S. Willis,T. Gruosso,M. Park,B. Haibe-Kains,B. Gallas,A.M. Thompson,I. Cree,C. Sotiriou,C. Solinas,M. Preusser,S.M. Hewitt,D. Rimm,G. Viale,S. Loi,S. Loibl,R. Salgado,C. Denkert
Seminars in Cancer Biology.2018;52(14)151
[DOI]
146Reimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology
Kaustav Bera,Ian Katz,Anant Madabhushi
JCO Clinical Cancer Informatics.2020;52(4)1039
[DOI]
147Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma
Jean Le’Clerc Arrastia,Nick Heilenkötter,Daniel Otero Baguer,Lena Hauberg-Lotte,Tobias Boskamp,Sonja Hetzer,Nicole Duschner,Jörg Schaller,Peter Maass
Journal of Imaging.2021;7(4)71
[DOI]
148Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma
Rene Bidart,Alexander Wong
Journal of Imaging.2019;11663(4)369
[DOI]
149Proteomic investigations into resistance in colorectal cancer
David I. Cantor,Harish R. Cheruku,Jack Westacott,Joo-Shik Shin,Abidali Mohamedali,Seong Boem Ahn
Expert Review of Proteomics.2020;17(1)49
[DOI]
150Automated detection algorithm for C4d immunostaining showed comparable diagnostic performance to pathologists in renal allograft biopsy
Gyuheon Choi,Young-Gon Kim,Haeyon Cho,Namkug Kim,Hyunna Lee,Kyung Chul Moon,Heounjeong Go
Modern Pathology.2020;33(8)1626
[DOI]
151Bioinformatics analysis of whole slide images reveals significant neighborhood preferences of tumor cells in Hodgkin lymphoma
Jennifer Hannig,Hendrik Schäfer,Jörg Ackermann,Marie Hebel,Tim Schäfer,Claudia Döring,Sylvia Hartmann,Martin-Leo Hansmann,Ina Koch,Jason A. Papin
PLOS Computational Biology.2020;16(1)e1007516
[DOI]
152A Nuclei Segmentation Research Based on Convolutional Neural Network
?? ?
Computer Science and Application.2018;08(11)1643
[DOI]
153Same same but different: A Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations
Joshua Kubach,Angelika Muhlebner-Fahrngruber,Figen Soylemezoglu,Hajime Miyata,Pitt Niehusmann,Mrinalini Honavar,Fabio Rogerio,Se-Hoon Kim,Eleonora Aronica,Rita Garbelli,Samuel Vilz,Alexander Popp,Stefan Walcher,Christoph Neuner,Michael Scholz,Stefanie Kuerten,Verena Schropp,Sebastian Roeder,Philip Eichhorn,Markus Eckstein,Axel Brehmer,Katja Kobow,Roland Coras,Ingmar Blumcke,Samir Jabari
Epilepsia.2020;61(3)421
[DOI]
154Cellular community detection for tissue phenotyping in colorectal cancer histology images
Sajid Javed,Arif Mahmood,Muhammad Moazam Fraz,Navid Alemi Koohbanani,Ksenija Benes,Yee-Wah Tsang,Katherine Hewitt,David Epstein,David Snead,Nasir Rajpoot
Medical Image Analysis.2020;63(3)101696
[DOI]
155Glioma Grading via Analysis of Digital Pathology Images Using Machine Learning
Saima Rathore,Tamim Niazi,Muhammad Aksam Iftikhar,Ahmad Chaddad
Cancers.2020;12(3)578
[DOI]
156Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images
Wenyuan Li,Jiayun Li,Karthik V. Sarma,King Chung Ho,Shiwen Shen,Beatrice S. Knudsen,Arkadiusz Gertych,Corey W. Arnold
IEEE Transactions on Medical Imaging.2019;38(4)945
[DOI]
157Detecting breast cancer using artificial intelligence: Convolutional neural network
Avishek Choudhury,Sunanda Perumalla
Technology and Health Care.2021;29(1)33
[DOI]
158Detecting breast cancer using artificial intelligence: Convolutional neural network
Jun Xu,Chao Zhou,Bing Lang,Qingshan Liu
Technology and Health Care.2017;29(1)73
[DOI]
159A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow
Zeynettin Akkus,Jason Cai,Arunnit Boonrod,Atefeh Zeinoddini,Alexander D. Weston,Kenneth A. Philbrick,Bradley J. Erickson
Journal of the American College of Radiology.2019;16(9)1318
[DOI]
160A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow
Seiya Murata,Chonho Lee,Chihiro Tanikawa,Susumu Date
Journal of the American College of Radiology.2017;16(9)1
[DOI]
161A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow
Wenqi Lu,Simon Graham,Mohsin Bilal,Nasir Rajpoot,Fayyaz Minhas
Journal of the American College of Radiology.2020;16(9)1049
[DOI]
162A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow
Md. Jamil-Ur Rahman,Rafi Ibn Sultan,Firoz Mahmud,Sazid Al Ahsan,Abdul Matin
Journal of the American College of Radiology.2018;16(9)0673
[DOI]
163A machine learning model for detecting invasive ductal carcinoma with Google Cloud AutoML Vision
Yan Zeng,Jinmiao Zhang
Computers in Biology and Medicine.2020;122(9)103861
[DOI]
164Real-time intraoperative diagnosis by deep neural network driven multiphoton virtual histology
Sixian You,Yi Sun,Lin Yang,Jaena Park,Haohua Tu,Marina Marjanovic,Saurabh Sinha,Stephen A. Boppart
npj Precision Oncology.2019;3(1)103861
[DOI]
165The Job Market Outlook for Residency Graduates: Clear Weather Ahead for the Butterflies?
Ralph Green,Michael A. Hogarth,Michael B. Prystowsky,Hooman H. Rashidi
Archives of Pathology & Laboratory Medicine.2018;142(4)435
[DOI]
166The Job Market Outlook for Residency Graduates: Clear Weather Ahead for the Butterflies?
Jiayu Wang,Ruoxiu Xiao,Lijing Jia,Xianmei Wang
Archives of Pathology & Laboratory Medicine.2019;11903(4)395
[DOI]
167Quantitative Characterization of CD8+ T Cell Clustering and Spatial Heterogeneity in Solid Tumors
Chang Gong,Robert A. Anders,Qingfeng Zhu,Janis M. Taube,Benjamin Green,Wenting Cheng,Imke H. Bartelink,Paolo Vicini,Bing Wang,Aleksander S. Popel
Frontiers in Oncology.2019;8(4)395
[DOI]
168Whole-slide image focus quality: Automatic assessment and impact on ai cancer detection
Timo Kohlberger,Yun Liu,Melissa Moran,Po-HsuanCameron Chen,Trissia Brown,JasonD Hipp,CraigH Mermel,MartinC Stumpe
Journal of Pathology Informatics.2019;10(1)39
[DOI]
169A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets
Himanshu Mittal,Avinash Chandra Pandey,Mukesh Saraswat,Sumit Kumar,Raju Pal,Garv Modwel
Multimedia Tools and Applications.2021;10(1)39
[DOI]
170Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
Arkadiusz Gertych,Zaneta Swiderska-Chadaj,Zhaoxuan Ma,Nathan Ing,Tomasz Markiewicz,Szczepan Cierniak,Hootan Salemi,Samuel Guzman,Ann E. Walts,Beatrice S. Knudsen
Scientific Reports.2019;9(1)39
[DOI]
171Survey of deep learning in breast cancer image analysis
Taye Girma Debelee,Friedhelm Schwenker,Achim Ibenthal,Dereje Yohannes
Evolving Systems.2020;11(1)143
[DOI]
172A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
David Romo-Bucheli,Andrew Janowczyk,Hannah Gilmore,Eduardo Romero,Anant Madabhushi
Cytometry Part A.2017;91(6)566
[DOI]
173Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape
Michael S. Landau,Liron Pantanowitz
Journal of the American Society of Cytopathology.2019;8(4)230
[DOI]
174Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape
Hyun Jung,Christian Suloway,Tianyi Miao,Elijah F. Edmondson,David R. Morcock,Claire Deleage,Yanling Liu,Jack R. Collins,Curtis Lisle
Journal of the American Society of Cytopathology.2018;8(4)1
[DOI]
175Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape
Vladimir Khryashchev,Anton Lebedev,Olga Stepanova,Anastasiya Srednyakova
Journal of the American Society of Cytopathology.2019;199(4)149
[DOI]
176Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape
Marvin Lerousseau,Maria Vakalopoulou,Marion Classe,Julien Adam,Enzo Battistella,Alexandre Carré,Théo Estienne,Théophraste Henry,Eric Deutsch,Nikos Paragios
Journal of the American Society of Cytopathology.2020;12265(4)470
[DOI]
177Stacked sparse autoencoder and case-based postprocessing method for nucleus detection
Siqi Li,Huiyan Jiang,Jie Bai,Ye Liu,Yu-dong Yao
Neurocomputing.2019;359(4)494
[DOI]
178Stacked sparse autoencoder and case-based postprocessing method for nucleus detection
Sajid Javed,Arif Mahmood,Naoufel Werghi,Nasir Rajpoot
Neurocomputing.2019;359(4)342
[DOI]
179Deep Learning in Toxicologic Pathology: A New Approach to Evaluate Rodent Retinal Atrophy
Maria Cristina De Vera Mudry,Jim Martin,Vanessa Schumacher,Raghavan Venugopal
Toxicologic Pathology.2021;49(4)851
[DOI]
180Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database
Victor Olsavszky,Mihnea Dosius,Cristian Vladescu,Johannes Benecke
International Journal of Environmental Research and Public Health.2020;17(14)4979
[DOI]
181Machine learning and feature selection for drug response prediction in precision oncology applications
Mehreen Ali,Tero Aittokallio
Biophysical Reviews.2019;11(1)31
[DOI]
182Using Deep Learning Artificial Intelligence Algorithms to Verify N-Nitroso-N-Methylurea and Urethane Positive Control Proliferative Changes in Tg-RasH2 Mouse Carcinogenicity Studies
Daniel Rudmann,Jay Albretsen,Colin Doolan,Mark Gregson,Beth Dray,Aaron Sargeant,Donal O’Shea D,Jogile Kuklyte,Adam Power,Jenny Fitzgerald
Toxicologic Pathology.2021;49(4)938
[DOI]
183Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
Jon Whitney,German Corredor,Andrew Janowczyk,Shridar Ganesan,Scott Doyle,John Tomaszewski,Michael Feldman,Hannah Gilmore,Anant Madabhushi
BMC Cancer.2018;18(1)938
[DOI]
184Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
Matthias Kohl,Christoph Walz,Florian Ludwig,Stefan Braunewell,Maximilian Baust
BMC Cancer.2018;10882(1)903
[DOI]
185Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics
Zhichao Liu,Erika P. Portero,Yiren Jian,Yunjie Zhao,Rosemary M. Onjiko,Chen Zeng,Peter Nemes
Analytical Chemistry.2019;91(9)5768
[DOI]
186Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics
Hesham Alghodhaifi,Abdulmajeed Alghodhaifi,Mohammed Alghodhaifi
Analytical Chemistry.2019;91(9)374
[DOI]
187Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics
Azam Hamidinekoo,Reyer Zwiggelaar
Analytical Chemistry.2017;10553(9)213
[DOI]
188Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders
Mesut Togaçar,Burhan Ergen,Zafer Cömert
Medical Hypotheses.2020;135(9)109503
[DOI]
189Deep learning a boon for biophotonics?
Pranita Pradhan,Shuxia Guo,Oleg Ryabchykov,Juergen Popp,Thomas W. Bocklitz
Journal of Biophotonics.2020;13(6)109503
[DOI]
190Artificial intelligence in radiology
Ahmed Hosny,Chintan Parmar,John Quackenbush,Lawrence H. Schwartz,Hugo J. W. L. Aerts
Nature Reviews Cancer.2018;18(8)500
[DOI]
191Medical Image Analysis using Convolutional Neural Networks: A Review
Syed Muhammad Anwar,Muhammad Majid,Adnan Qayyum,Muhammad Awais,Majdi Alnowami,Muhammad Khurram Khan
Journal of Medical Systems.2018;42(11)500
[DOI]
192Medical Image Analysis using Convolutional Neural Networks: A Review
Hui Qu,Gregory Riedlinger,Pengxiang Wu,Qiaoying Huang,Jingru Yi,Subhajyoti De,Dimitris Metaxas
Journal of Medical Systems.2019;42(11)900
[DOI]
193A deep learning method for classifying mammographic breast density categories
Aly A. Mohamed,Wendie A. Berg,Hong Peng,Yahong Luo,Rachel C. Jankowitz,Shandong Wu
Medical Physics.2018;45(1)314
[DOI]
194New methodologies in ageing research
Brenna Osborne,Daniela Bakula,Michael Ben Ezra,Charlotte Dresen,Esben Hartmann,Stella M. Kristensen,Garik V. Mkrtchyan,Malte H. Nielsen,Michael A. Petr,Morten Scheibye-Knudsen
Ageing Research Reviews.2020;62(1)101094
[DOI]
195Predicting cancer outcomes from histology and genomics using convolutional networks
Pooya Mobadersany,Safoora Yousefi,Mohamed Amgad,David A. Gutman,Jill S. Barnholtz-Sloan,José E. Velázquez Vega,Daniel J. Brat,Lee A. D. Cooper
Proceedings of the National Academy of Sciences.2018;115(13)E2970
[DOI]
196A bird’s-eye view of deep learning in bioimage analysis
Erik Meijering
Computational and Structural Biotechnology Journal.2020;18(13)2312
[DOI]
197Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with NASH using persistent homology
Takashi Teramoto,Toshiya Shinohara,Akihiro Takiyama
Computer Methods and Programs in Biomedicine.2020;195(13)105614
[DOI]
198Bringing 3D tumor models to the clinic - predictive value for personalized medicine
Kathrin Halfter,Barbara Mayer
Biotechnology Journal.2017;12(2)1600295
[DOI]
199Deep Learning in Head and Neck Tumor Multiomics Diagnosis and Analysis: Review of the Literature
Xi Wang,Bin-bin Li
Frontiers in Genetics.2021;12(2)1600295
[DOI]
200Deep Learning in Head and Neck Tumor Multiomics Diagnosis and Analysis: Review of the Literature
Aditya Sriram,Shivam Kalra,H.R. Tizhoosh
Frontiers in Genetics.2019;12(2)1
[DOI]
201Artificial intelligence as the next step towards precision pathology
B. Acs,M. Rantalainen,J. Hartman
Journal of Internal Medicine.2020;288(1)62
[DOI]
202Artificial intelligence as the next step towards precision pathology
Ambarish Ganguly,Rik Das,S. K. Setua
Journal of Internal Medicine.2020;288(1)1
[DOI]
203Supervised machine learning tools: a tutorial for clinicians
Lucas Lo Vercio,Kimberly Amador,Jordan J Bannister,Sebastian Crites,Alejandro Gutierrez,M. Ethan MacDonald,Jasmine Moore,Pauline Mouches,Deepthi Rajashekar,Serena Schimert,Nagesh Subbanna,Anup Tuladhar,Nanjia Wang,Matthias Wilms,Anthony Winder,Nils D Forkert
Journal of Neural Engineering.2020;17(6)062001
[DOI]
204Supervised machine learning tools: a tutorial for clinicians
Benjamin Chidester,That-Vinh Ton,Minh-Triet Tran,Jian Ma,Minh N. Do
Journal of Neural Engineering.2019;17(6)1097
[DOI]
205A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues
Jaime Gallego,Zaneta Swiderska-Chadaj,Tomasz Markiewicz,Michifumi Yamashita,M. Alejandra Gabaldon,Arkadiusz Gertych
Computerized Medical Imaging and Graphics.2021;89(6)101865
[DOI]
206Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks
Fahime Sheikhzadeh,Rabab K. Ward,Dirk van Niekerk,Martial Guillaud,Christophe Egles
PLOS ONE.2018;13(1)e0190783
[DOI]
207Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma
Hiroaki Miyoshi,Kensaku Sato,Yoshinori Kabeya,Sho Yonezawa,Hiroki Nakano,Yusuke Takeuchi,Issei Ozawa,Shoichi Higo,Eriko Yanagida,Kyohei Yamada,Kei Kohno,Takuya Furuta,Hiroko Muta,Mai Takeuchi,Yuya Sasaki,Takuro Yoshimura,Kotaro Matsuda,Reiji Muto,Mayuko Moritsubo,Kanako Inoue,Takaharu Suzuki,Hiroaki Sekinaga,Koichi Ohshima
Laboratory Investigation.2020;100(10)1300
[DOI]
208Development and evaluation of deep learning–based segmentation of histologic structures in the kidney cortex with multiple histologic stains
Catherine P. Jayapandian,Yijiang Chen,Andrew R. Janowczyk,Matthew B. Palmer,Clarissa A. Cassol,Miroslav Sekulic,Jeffrey B. Hodgin,Jarcy Zee,Stephen M. Hewitt,John O’Toole,Paula Toro,John R. Sedor,Laura Barisoni,Anant Madabhushi,J. Sedor,K. Dell,M. Schachere,J. Negrey,K. Lemley,E. Lim,T. Srivastava,A. Garrett,C. Sethna,K. Laurent,G. Appel,M. Toledo,L. Barisoni,L. Greenbaum,C. Wang,C. Kang,S. Adler,C. Nast,J. LaPage,John H. Stroger,A. Athavale,M. Itteera,A. Neu,S. Boynton,F. Fervenza,M. Hogan,J. Lieske,V. Chernitskiy,F. Kaskel,N. Kumar,P. Flynn,J. Kopp,J. Blake,H. Trachtman,O. Zhdanova,F. Modersitzki,S. Vento,R. Lafayette,K. Mehta,C. Gadegbeku,D. Johnstone,S. Quinn-Boyle,D. Cattran,M. Hladunewich,H. Reich,P. Ling,M. Romano,A. Fornoni,C. Bidot,M. Kretzler,D. Gipson,A. Williams,J. LaVigne,V. Derebail,K. Gibson,A. Froment,S. Grubbs,L. Holzman,K. Meyers,K. Kallem,J. Lalli,K. Sambandam,Z. Wang,M. Rogers,A. Jefferson,S. Hingorani,K. Tuttle,M. Bray,M. Kelton,A. Cooper,B. Freedman,J.J. Lin
Kidney International.2021;99(1)86
[DOI]
209Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
Mohamed Amgad,Elisabeth Specht Stovgaard,Eva Balslev,Jeppe Thagaard,Weijie Chen,Sarah Dudgeon,Ashish Sharma,Jennifer K. Kerner,Carsten Denkert,Yinyin Yuan,Khalid AbdulJabbar,Stephan Wienert,Peter Savas,Leonie Voorwerk,Andrew H. Beck,Anant Madabhushi,Johan Hartman,Manu M. Sebastian,Hugo M. Horlings,Jan Hudecek,Francesco Ciompi,David A. Moore,Rajendra Singh,Elvire Roblin,Marcelo Luiz Balancin,Marie-Christine Mathieu,Jochen K. Lennerz,Pawan Kirtani,I-Chun Chen,Jeremy P. Braybrooke,Giancarlo Pruneri,Sandra Demaria,Sylvia Adams,Stuart J. Schnitt,Sunil R. Lakhani,Federico Rojo,Laura Comerma,Sunil S. Badve,Mehrnoush Khojasteh,W. Fraser Symmans,Christos Sotiriou,Paula Gonzalez-Ericsson,Katherine L. Pogue-Geile,Rim S. Kim,David L. Rimm,Giuseppe Viale,Stephen M. Hewitt,John M. S. Bartlett,Frédérique Penault-Llorca,Shom Goel,Huang-Chun Lien,Sibylle Loibl,Zuzana Kos,Sherene Loi,Matthew G. Hanna,Stefan Michiels,Marleen Kok,Torsten O. Nielsen,Alexander J. Lazar,Zsuzsanna Bago-Horvath,Loes F. S. Kooreman,Jeroen A. W. M. van der Laak,Joel Saltz,Brandon D. Gallas,Uday Kurkure,Michael Barnes,Roberto Salgado,Lee A. D. Cooper
npj Breast Cancer.2020;6(1)86
[DOI]
210Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
Kavya Ravichandran,Nathaniel Braman,Andrew Janowczyk,Anant Madabhushi,Kensaku Mori,Nicholas Petrick
npj Breast Cancer.2018;6(1)11
[DOI]
211Applications of deep learning for the analysis of medical data
Hyun-Jong Jang,Kyung-Ok Cho
Archives of Pharmacal Research.2019;42(6)492
[DOI]
212Advanced Morphologic Analysis for Diagnosing Allograft Rejection
Eliot G. Peyster,Anant Madabhushi,Kenneth B. Margulies
Transplantation.2018;102(8)1230
[DOI]
213Deep feature transfer learning for trusted and automated malware signature generation in private cloud environments
Daniel Nahmias,Aviad Cohen,Nir Nissim,Yuval Elovici
Neural Networks.2020;124(8)243
[DOI]
214Classification of glomerular pathological findings using deep learning and nephrologist–AI collective intelligence approach
Eiichiro Uchino,Kanata Suzuki,Noriaki Sato,Ryosuke Kojima,Yoshinori Tamada,Shusuke Hiragi,Hideki Yokoi,Nobuhiro Yugami,Sachiko Minamiguchi,Hironori Haga,Motoko Yanagita,Yasushi Okuno
International Journal of Medical Informatics.2020;141(8)104231
[DOI]
215A novel model for malaria prediction based on ensemble algorithms
Mengyang Wang,Hui Wang,Jiao Wang,Hongwei Liu,Rui Lu,Tongqing Duan,Xiaowen Gong,Siyuan Feng,Yuanyuan Liu,Zhuang Cui,Changping Li,Jun Ma,Pawel Plawiak
PLOS ONE.2019;14(12)e0226910
[DOI]
216Transfer learning for classification of cardiovascular tissues in histological images
Claudia Mazo,Jose Bernal,Maria Trujillo,Enrique Alegre
Computer Methods and Programs in Biomedicine.2018;165(12)69
[DOI]
217Transfer learning for classification of cardiovascular tissues in histological images
Elnaz Mohammadi,Mahdi Orooji
Computer Methods and Programs in Biomedicine.2018;165(12)1
[DOI]
218Deep learning in cancer pathology: a new generation of clinical biomarkers
Amelie Echle,Niklas Timon Rindtorff,Titus Josef Brinker,Tom Luedde,Alexander Thomas Pearson,Jakob Nikolas Kather
British Journal of Cancer.2021;124(4)686
[DOI]
219Closing the translation gap: AI applications in digital pathology
David F. Steiner,Po-Hsuan Cameron Chen,Craig H. Mermel
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2021;1875(1)188452
[DOI]
220Review of the current state of digital image analysis in breast pathology
Martin C. Chang,Miralem Mrkonjic
The Breast Journal.2020;26(6)1208
[DOI]
221Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns
Daniel Aitor Holdbrook,Malay Singh,Yukti Choudhury,Emarene Mationg Kalaw,Valerie Koh,Hui Shan Tan,Ravindran Kanesvaran,Puay Hoon Tan,John Yuen Shyi Peng,Min-Han Tan,Hwee Kuan Lee
JCO Clinical Cancer Informatics.2018;26(2)1
[DOI]
222Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
Gregory Penzias,Asha Singanamalli,Robin Elliott,Jay Gollamudi,Natalie Shih,Michael Feldman,Phillip D. Stricker,Warick Delprado,Sarita Tiwari,Maret Böhm,Anne-Maree Haynes,Lee Ponsky,Pingfu Fu,Pallavi Tiwari,Satish Viswanath,Anant Madabhushi,Aamir Ahmad
PLOS ONE.2018;13(8)e0200730
[DOI]
223Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
Artem Pimkin,Gleb Makarchuk,Vladimir Kondratenko,Maxim Pisov,Egor Krivov,Mikhail Belyaev
PLOS ONE.2018;10882(8)877
[DOI]
224An Empirical Evaluation of Nuclei Segmentation from H&E Images in a Real Application Scenario
Lorenzo Putzu,Giorgio Fumera
Applied Sciences.2020;10(22)7982
[DOI]
225Application of deep learning to the classification of images from colposcopy
Masakazu Sato,Koji Horie,Aki Hara,Yuichiro Miyamoto,Kazuko Kurihara,Kensuke Tomio,Harushige Yokota
Oncology Letters.2018;10(22)7982
[DOI]
226Intelligence artificielle et radiothérapie : quelles bases et quelles perspectives ?
A. Burgun
Cancer/Radiothérapie.2019;23(8)913
[DOI]
227Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)913
[DOI]
228Automatic Nuclear Segmentation Using Multiscale Radial Line Scanning With Dynamic Programming
Hongming Xu,Cheng Lu,Richard Berendt,Naresh Jha,Mrinal Mandal
IEEE Transactions on Biomedical Engineering.2017;64(10)2475
[DOI]
229A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images
Anabia Sohail,Asifullah Khan,Noorul Wahab,Aneela Zameer,Saranjam Khan
Scientific Reports.2021;11(1)2475
[DOI]
230A new era: artificial intelligence and machine learning in prostate cancer
S. Larry Goldenberg,Guy Nir,Septimiu E. Salcudean
Nature Reviews Urology.2019;16(7)391
[DOI]
231Impact of stain normalization and patch selection on the performance of convolutional neural networks in histological breast and prostate cancer classification
Massimo Salvi,Filippo Molinari,U Rajendra Acharya,Luca Molinaro,Kristen M. Meiburger
Computer Methods and Programs in Biomedicine Update.2021;1(7)100004
[DOI]
232A deep learning based multiscale approach to segment the areas of interest in whole slide images
Yanbo Feng,Adel Hafiane,Hélène Laurent
Computerized Medical Imaging and Graphics.2021;90(7)101923
[DOI]
233A contemporary review of machine learning in otolaryngology–head and neck surgery
Matthew G. Crowson,Jonathan Ranisau,Antoine Eskander,Aaron Babier,Bin Xu,Russel R. Kahmke,Joseph M. Chen,Timothy C. Y. Chan
The Laryngoscope.2020;130(1)45
[DOI]
234Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype
Heather D. Couture,Lindsay A. Williams,Joseph Geradts,Sarah J. Nyante,Ebonee N. Butler,J. S. Marron,Charles M. Perou,Melissa A. Troester,Marc Niethammer
npj Breast Cancer.2018;4(1)45
[DOI]
235A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Nathan Ing,Fangjin Huang,Andrew Conley,Sungyong You,Zhaoxuan Ma,Sergey Klimov,Chisato Ohe,Xiaopu Yuan,Mahul B. Amin,Robert Figlin,Arkadiusz Gertych,Beatrice S. Knudsen
Scientific Reports.2017;7(1)45
[DOI]
236A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Bhagirathi Halalli,Aziz Makandar
Scientific Reports.2019;1036(1)106
[DOI]
237Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
Shivam Kalra,H. R. Tizhoosh,Sultaan Shah,Charles Choi,Savvas Damaskinos,Amir Safarpoor,Sobhan Shafiei,Morteza Babaie,Phedias Diamandis,Clinton J. V. Campbell,Liron Pantanowitz
npj Digital Medicine.2020;3(1)106
[DOI]
238Automated Classification for Visual-Only Postmortem Inspection of Porcine Pathology
Stephen McKenna,Telmo Amaral,Ilias Kyriazakis
IEEE Transactions on Automation Science and Engineering.2020;17(2)1005
[DOI]
239HistoNet: A Deep Learning-Based Model of Normal Histology
Holger Hoefling,Tobias Sing,Imtiaz Hossain,Julie Boisclair,Arno Doelemeyer,Thierry Flandre,Alessandro Piaia,Vincent Romanet,Gianluca Santarossa,Chandrassegar Saravanan,Esther Sutter,Oliver Turner,Kuno Wuersch,Pierre Moulin
Toxicologic Pathology.2021;49(4)784
[DOI]
240HistoNet: A Deep Learning-Based Model of Normal Histology
Thomas Lampert,Odyssee Merveille,Jessica Schmitz,Germain Forestier,Friedrich Feuerhake,Cedric Wemmert
Toxicologic Pathology.2019;49(4)905
[DOI]
241Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
Fabian Heinemann,Gerald Birk,Tanja Schoenberger,Birgit Stierstorfer,Robert Hurst
PLOS ONE.2018;13(8)e0202708
[DOI]
242A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival
Mustafa I. Jaber,Bing Song,Clive Taylor,Charles J. Vaske,Stephen C. Benz,Shahrooz Rabizadeh,Patrick Soon-Shiong,Christopher W. Szeto
Breast Cancer Research.2020;22(1)e0202708
[DOI]
243A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival
Vaishnavi Subramanian,Benjamin Chidester,Jian Ma,Minh N. Do
Breast Cancer Research.2018;22(1)805
[DOI]
244A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival
Sarang Mahajan,Urmil Shah,Rucha Tambe,Mohit Agrawal,Bhushan Garware
Breast Cancer Research.2019;22(1)1
[DOI]
245A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival
Upeka V. Somaratne,Kok Wai Wong,Jeremy Parry,Ferdous Sohel,Xuequn Wang,Hamid Laga
Breast Cancer Research.2019;22(1)1
[DOI]
246Liver Pathologic Changes After Direct-Acting Antiviral Agent Therapy and Sustained Virologic Response in the Setting of Chronic Hepatitis C Virus Infection
Romulo Celli,Saad Saffo,Saleem Kamili,Nicholas Wiese,Tonya Hayden,Tamar Taddei,Dhanpat Jain
Archives of Pathology & Laboratory Medicine.2021;145(4)419
[DOI]
247The Use of Deep Learning to Predict Stroke Patient Mortality
Songhee Cheon,Jungyoon Kim,Jihye Lim
International Journal of Environmental Research and Public Health.2019;16(11)1876
[DOI]
248A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises
S. Kevin Zhou,Hayit Greenspan,Christos Davatzikos,James S. Duncan,Bram Van Ginneken,Anant Madabhushi,Jerry L. Prince,Daniel Rueckert,Ronald M. Summers
Proceedings of the IEEE.2021;109(5)820
[DOI]
249A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises
Tahsin Kurc,Ashish Sharma,Rajarsi Gupta,Le Hou,Han Le,Shahira Abousamra,Erich Bremer,Ryan Birmingham,Tammy DiPrima,Nan Li,Feiqiao Wang,Joseph Balsamo,Whitney Bremer,Dimitris Samaras,Joel Saltz
Proceedings of the IEEE.2020;11993(5)371
[DOI]
250Glandular Morphometrics for Objective Grading of Colorectal Adenocarcinoma Histology Images
Ruqayya Awan,Korsuk Sirinukunwattana,David Epstein,Samuel Jefferyes,Uvais Qidwai,Zia Aftab,Imaad Mujeeb,David Snead,Nasir Rajpoot
Scientific Reports.2017;7(1)371
[DOI]
251Glandular Morphometrics for Objective Grading of Colorectal Adenocarcinoma Histology Images
Sourodip Ghosh,Richik Ghosh,Shreya Sahay,Suprava Patnaik
Scientific Reports.2021;62(1)103
[DOI]
252Computer-aided diagnosis in the era of deep learning
Heang-Ping Chan,Lubomir M. Hadjiiski,Ravi K. Samala
Medical Physics.2020;47(5)103
[DOI]
253Computer-aided diagnosis in the era of deep learning
Bingzhe Wu,Shiwan Zhao,Guangyu Sun,Xiaolu Zhang,Zhong Su,Caihong Zeng,Zhihong Liu
Medical Physics.2019;47(5)2094
[DOI]
254Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers
Lei Jin,Feng Shi,Qiuping Chun,Hong Chen,Yixin Ma,Shuai Wu,N U Farrukh Hameed,Chunming Mei,Junfeng Lu,Jun Zhang,Abudumijiti Aibaidula,Dinggang Shen,Jinsong Wu
Neuro-Oncology.2021;23(1)44
[DOI]
255PMNet: A probability map based scaled network for breast cancer diagnosis
Salman Ahmed,Maria Tariq,Hammad Naveed
Computerized Medical Imaging and Graphics.2021;89(1)101863
[DOI]
256A deep learning approach for mitosis detection: Application in tumor proliferation prediction from whole slide images
Ramin Nateghi,Habibollah Danyali,Mohammad Sadegh Helfroush
Artificial Intelligence in Medicine.2021;114(1)102048
[DOI]
257Current and future applications of artificial intelligence in pathology: a clinical perspective
Emad A Rakha,Michael Toss,Sho Shiino,Paul Gamble,Ronnachai Jaroensri,Craig H Mermel,Po-Hsuan Cameron Chen
Journal of Clinical Pathology.2020;114(1)jclinpath-2020-206908
[DOI]
258Current and future applications of artificial intelligence in pathology: a clinical perspective
Cecília Lantos,Steven M. Kornblau,Amina A. Qutub
Journal of Clinical Pathology.2018;114(1)jclinpath-2020-206908
[DOI]
259COUNTERPOINT: Is ICD-10 Diagnosis Coding Important in the Era of Big Data? No
David M. Liebovitz,John Fahrenbach
Chest.2018;153(5)1095
[DOI]
260Multi-Task Pre-Training of Deep Neural Networks for Digital Pathology
Romain Mormont,Pierre Geurts,Raphael Maree
IEEE Journal of Biomedical and Health Informatics.2021;25(2)412
[DOI]
261Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks
Muyi Sun,Wei Zhou,Xingqun Qi,Guanhong Zhang,Leonard Girnita,Stefan Seregard,Hans Grossniklaus,Zeyi Yao,Xiaoguang Zhou,Gustav Stålhammar
Cancers.2019;11(10)1579
[DOI]
262Hybrid autofluorescence and photoacoustic label-free microscopy for the investigation and identification of malignancies in ocular biopsies
George J. Tserevelakis,Kostas G. Mavrakis,Danai Pantazopoulou,Eleni Lagoudaki,Efstathios Detorakis,Giannis Zacharakis
Optics Letters.2020;45(20)5748
[DOI]
263High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
Angel Cruz-Roa,Hannah Gilmore,Ajay Basavanhally,Michael Feldman,Shridar Ganesan,Natalie Shih,John Tomaszewski,Anant Madabhushi,Fabio González,Yuanquan Wang
PLOS ONE.2018;13(5)e0196828
[DOI]
264Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data
Alexander Effland,Erich Kobler,Anne Brandenburg,Teresa Klatzer,Leonie Neuhäuser,Michael Hölzel,Jennifer Landsberg,Thomas Pock,Martin Rumpf
International Journal of Computer Assisted Radiology and Surgery.2019;14(4)587
[DOI]
265Classification of Benign and Malignant Breast Cancer using Supervised Machine Learning Algorithms Based on Image and Numeric Datasets
Ratula Ray,Azian Azamimi Abdullah,Debasish Kumar Mallick,Satya Ranjan Dash
Journal of Physics: Conference Series.2019;1372(4)012062
[DOI]
266Classification of Benign and Malignant Breast Cancer using Supervised Machine Learning Algorithms Based on Image and Numeric Datasets
Haonan Wang,Yinhan Li,Zhiyi Luo
Journal of Physics: Conference Series.2020;1372(4)193
[DOI]
267Artificial intelligence in digital breast pathology: Techniques and applications
Asmaa Ibrahim,Paul Gamble,Ronnachai Jaroensri,Mohammed M. Abdelsamea,Craig H. Mermel,Po-Hsuan Cameron Chen,Emad A. Rakha
The Breast.2020;49(4)267
[DOI]
268Deep computational pathology in breast cancer
Andrea Duggento,Allegra Conti,Alessandro Mauriello,Maria Guerrisi,Nicola Toschi
Seminars in Cancer Biology.2021;72(4)226
[DOI]
269Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology
Oliver C. Turner,Famke Aeffner,Dinesh S. Bangari,Wanda High,Brian Knight,Tom Forest,Brieuc Cossic,Lauren E. Himmel,Daniel G. Rudmann,Bhupinder Bawa,Anantharaman Muthuswamy,Olulanu H. Aina,Elijah F. Edmondson,Chandrassegar Saravanan,Danielle L. Brown,Tobias Sing,Manu M. Sebastian
Toxicologic Pathology.2020;48(2)277
[DOI]
270Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology
Srishti Gautam,Arnav Bhavsar,Anil K. Sao,Harinarayan K.K.,Metin N. Gurcan,John E. Tomaszewski
Toxicologic Pathology.2018;48(2)32
[DOI]
271Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology
Santiago López-Tapia,Cristobal Olivencia,José Aneiros-Fernández,Nicolás Pérez de la Blanca
Toxicologic Pathology.2019;11435(2)144
[DOI]
272Classification of Molecular Biomarkers
Ankeet Shah,Dominic C Grimberg,Brant A Inman
Société Internationale d’Urologie Journal.2020;1(1)8
[DOI]
273Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes
Thomas J S Durant,Eben M Olson,Wade L Schulz,Richard Torres
Clinical Chemistry.2017;63(12)1847
[DOI]
274Deep Learning With Sampling in Colon Cancer Histology
Mary Shapcott,Katherine J. Hewitt,Nasir Rajpoot
Frontiers in Bioengineering and Biotechnology.2019;7(12)1847
[DOI]
275Deep Learning With Sampling in Colon Cancer Histology
Nick Weiss,Henning Kost,André Homeyer
Frontiers in Bioengineering and Biotechnology.2018;10882(12)727
[DOI]
276AI in Medical Imaging Informatics: Current Challenges and Future Directions
Andreas S. Panayides,Amir Amini,Nenad D. Filipovic,Ashish Sharma,Sotirios A. Tsaftaris,Alistair Young,David Foran,Nhan Do,Spyretta Golemati,Tahsin Kurc,Kun Huang,Konstantina S. Nikita,Ben P. Veasey,Michalis Zervakis,Joel H. Saltz,Constantinos S. Pattichis
IEEE Journal of Biomedical and Health Informatics.2020;24(7)1837
[DOI]
277AI in Medical Imaging Informatics: Current Challenges and Future Directions
Lyndon Chan,Mahdi Hosseini,Corwyn Rowsell,Konstantinos Plataniotis,Savvas Damaskinos
IEEE Journal of Biomedical and Health Informatics.2019;24(7)10661
[DOI]
278Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms
Hao Sun,Xianxu Zeng,Tao Xu,Gang Peng,Yutao Ma
IEEE Journal of Biomedical and Health Informatics.2020;24(6)1664
[DOI]
279Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review
R. Krithiga,P. Geetha
Archives of Computational Methods in Engineering.2020;24(6)1664
[DOI]
280Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review
Alberto Corvo,Marc A. van Driel,Michel A. Westenberg
Archives of Computational Methods in Engineering.2017;24(6)77
[DOI]
281Panoptic View of Prognostic Models for Personalized Breast Cancer Management
Geetanjali Saini,Karuna Mittal,Padmashree Rida,Emiel A. M. Janssen,Keerthi Gogineni,Ritu Aneja
Cancers.2019;11(9)1325
[DOI]
282Deep learning techniques for detecting preneoplastic and neoplastic lesions in human colorectal histological images
Paola Sena,Rita Fioresi,Francesco Faglioni,Lorena Losi,Giovanni Faglioni,Luca Roncucci
Oncology Letters.2019;11(9)1325
[DOI]
283The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis
Massimo Salvi,U. Rajendra Acharya,Filippo Molinari,Kristen M. Meiburger
Computers in Biology and Medicine.2021;128(9)104129
[DOI]
284The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis
Ziba Gandomkar,Patrick C. Brennan,Claudia Mello-Thoms,Elizabeth A. Krupinski
Computers in Biology and Medicine.2018;128(9)54
[DOI]
285The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis
Chen Wang,Ji Bao,Hong Bu
Computers in Biology and Medicine.2017;128(9)2154
[DOI]
286The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis
Xueyu Liu,Ming Li,Fang Hao,Guoye Zhang,Chen Wang,Xiaoshuang Zhou
Computers in Biology and Medicine.2020;128(9)229
[DOI]
287Multiplex Cellular Communities in Multi-Gigapixel Colorectal Cancer Histology Images for Tissue Phenotyping
Sajid Javed,Arif Mahmood,Naoufel Werghi,Ksenija Benes,Nasir Rajpoot
IEEE Transactions on Image Processing.2020;29(9)9204
[DOI]
288Multiplex Cellular Communities in Multi-Gigapixel Colorectal Cancer Histology Images for Tissue Phenotyping
Sahil Chelaramani,Manish Gupta,Vipul Agarwal,Prashant Gupta,Ranya Habash
IEEE Transactions on Image Processing.2020;12047(9)734
[DOI]
289Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload
Julianna D. Ianni,Rajath E. Soans,Sivaramakrishnan Sankarapandian,Ramachandra Vikas Chamarthi,Devi Ayyagari,Thomas G. Olsen,Michael J. Bonham,Coleman C. Stavish,Kiran Motaparthi,Clay J. Cockerell,Theresa A. Feeser,Jason B. Lee
Scientific Reports.2020;10(1)734
[DOI]
290Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis
Yanzhe Xu,Teresa Wu,Fei Gao,Jennifer R. Charlton,Kevin M. Bennett
Scientific Reports.2020;10(1)734
[DOI]
291Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology
Kaustav Bera,Kurt A. Schalper,David L. Rimm,Vamsidhar Velcheti,Anant Madabhushi
Nature Reviews Clinical Oncology.2019;16(11)703
[DOI]
292Arctic Vision: Using Neural Networks for Ice Object Classification, and Controlling How They Fail
Ole-Magnus Pedersen,Ekaterina Kim
Journal of Marine Science and Engineering.2020;8(10)770
[DOI]
293Mitosis detection techniques in H&E stained breast cancer pathological images: A comprehensive review
Xipeng Pan,Yinghua Lu,Rushi Lan,Zhenbing Liu,Zujun Qin,Huadeng Wang,Zaiyi Liu
Computers & Electrical Engineering.2021;91(10)107038
[DOI]
294Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
Le Hou,Rajarsi Gupta,John S. Van Arnam,Yuwei Zhang,Kaustubh Sivalenka,Dimitris Samaras,Tahsin M. Kurc,Joel H. Saltz
Scientific Data.2020;7(1)107038
[DOI]
295An automated computational image analysis pipeline for histological grading of cardiac allograft rejection
Eliot G Peyster,Sara Arabyarmohammadi,Andrew Janowczyk,Sepideh Azarianpour-Esfahani,Miroslav Sekulic,Clarissa Cassol,Luke Blower,Anil Parwani,Priti Lal,Michael D Feldman,Kenneth B Margulies,Anant Madabhushi
European Heart Journal.2021;7(1)107038
[DOI]
296Deep Learning-Based Image Classification in Differentiating Tufted Astrocytes, Astrocytic Plaques, and Neuritic Plaques
Shunsuke Koga,Nikhil B Ghayal,Dennis W Dickson
Journal of Neuropathology & Experimental Neurology.2021;80(4)306
[DOI]
297Training a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features
Germán Corredor,Jon Whitney,Viviana Arias,Anant Madabhushi,Eduardo Romero
Journal of Medical Imaging.2017;4(2)021105
[DOI]
298Training a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features
Nor Kumalasari Caecar Pratiwi,Yunendah Nur Fu’adah,Nur Ibrahim,Syamsul Rizal,Sofia Saidah
Journal of Medical Imaging.2021;746(2)477
[DOI]
299Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images
Yoshimasa Kawazoe,Kiminori Shimamoto,Ryohei Yamaguchi,Yukako Shintani-Domoto,Hiroshi Uozaki,Masashi Fukayama,Kazuhiko Ohe
Journal of Imaging.2018;4(7)91
[DOI]
300Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening
Dev Kumar Das,Subhranil Koley,Surajit Bose,Asok Kumar Maiti,Bhaskar Mitra,Gopeswar Mukherjee,Pranab Kumar Dutta
Applied Soft Computing.2019;83(7)105642
[DOI]
301Gated multimodal networks
John Arevalo,Thamar Solorio,Manuel Montes-y-Gómez,Fabio A. González
Neural Computing and Applications.2020;32(14)10209
[DOI]
302Gated multimodal networks
Tuan D. Pham,Chuanwen Fan,Hong Zhang,Xiao-Feng Sun
Neural Computing and Applications.2019;32(14)1
[DOI]
303Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis
Sai Chandra Kosaraju,Jie Hao,Hyun Min Koh,Mingon Kang
Methods.2020;179(14)3
[DOI]
304Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network
Yu Wang,Yating Chen,Ningning Yang,Longfei Zheng,Nilanjan Dey,Amira S. Ashour,V. Rajinikanth,João Manuel R.S. Tavares,Fuqian Shi
Applied Soft Computing.2019;74(14)40
[DOI]
305Deep learning powers cancer diagnosis in digital pathology
Yunjie He,Hong Zhao,Stephen T.C. Wong
Computerized Medical Imaging and Graphics.2021;88(14)101820
[DOI]
306Deep learning powers cancer diagnosis in digital pathology
Kamal Jnawali,Bhargava Chinni,Vikram Dogra,Navalgund Rao,Horst K. Hahn,Kensaku Mori
Computerized Medical Imaging and Graphics.2019;88(14)140
[DOI]
307Counting Mitoses With Digital Pathology in Breast Phyllodes Tumors
Zi Long Chow,Aye Aye Thike,Hui Hua Li,Nur Diyana Md Nasir,Joe Poh Sheng Yeong,Puay Hoon Tan
Archives of Pathology & Laboratory Medicine.2020;144(11)1397
[DOI]
308Counting Mitoses With Digital Pathology in Breast Phyllodes Tumors
Loris Nanni,Stefano Ghidoni,Sheryl Brahnam,Shaoxiong Liu,Ling Zhang
Archives of Pathology & Laboratory Medicine.2020;186(11)117
[DOI]
309Segmentation of Glomeruli Within Trichrome Images Using Deep Learning
Shruti Kannan,Laura A. Morgan,Benjamin Liang,McKenzie G. Cheung,Christopher Q. Lin,Dan Mun,Ralph G. Nader,Mostafa E. Belghasem,Joel M. Henderson,Jean M. Francis,Vipul C. Chitalia,Vijaya B. Kolachalama
Kidney International Reports.2019;4(7)955
[DOI]
310Learning from irregularly sampled data for endomicroscopy super-resolution: a comparative study of sparse and dense approaches
Agnieszka Barbara Szczotka,Dzhoshkun Ismail Shakir,Daniele Ravì,Matthew J. Clarkson,Stephen P. Pereira,Tom Vercauteren
International Journal of Computer Assisted Radiology and Surgery.2020;15(7)1167
[DOI]
311Impact of image analysis and artificial intelligence in thyroid pathology, with particular reference to cytological aspects
Ilaria Girolami,Stefano Marletta,Liron Pantanowitz,Evelin Torresani,Claudio Ghimenton,Mattia Barbareschi,Aldo Scarpa,Matteo Brunelli,Valeria Barresi,Pierpaolo Trimboli,Albino Eccher
Cytopathology.2020;31(5)432
[DOI]
312A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
Albino Yadavendra,Satish Chand
Machine Vision and Applications.2020;31(6)432
[DOI]
313A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
Zaneta Swiderska-Chadaj,Tomasz Markiewicz,Bartlomiej Grala,Malgorzata Lorent,Arkadiusz Gertych
Machine Vision and Applications.2017;723(6)448
[DOI]
314A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
Shamima Nasrin,Md Zahangir Alom,Ranga Burada,Tarek M. Taha,Vijayan K. Asari
Machine Vision and Applications.2019;723(6)345
[DOI]
315Quantification of hepatic steatosis in histologic images by deep learning method
Fan Yang,Xianyuan Jia,Pinggui Lei,Yan He,Yining Xiang,Jun Jiao,Shi Zhou,Wei Qian,Qinghong Duan
Journal of X-Ray Science and Technology.2020;27(6)1033
[DOI]
316Performance of an artificial intelligence algorithm for reporting urine cytopathology
Adit B. Sanghvi,Erastus Z. Allen,Keith M. Callenberg,Liron Pantanowitz
Cancer Cytopathology.2019;127(10)658
[DOI]
317Automated detection and quantification of breast cancer brain metastases in an animal model using democratized machine learning tools
Dina Sikpa,Jérémie P. Fouquet,Réjean Lebel,Phedias Diamandis,Maxime Richer,Martin Lepage
Scientific Reports.2019;9(1)658
[DOI]
318Automated detection and quantification of breast cancer brain metastases in an animal model using democratized machine learning tools
Yang Yu,Jiahao Wang,Ha Eun Chun,Yumeng Xu,Eliza Li Shan Fong,Aileen Wee,Hanry Yu
Scientific Reports.2021;9(1)208
[DOI]
319Glomerulus Classification and Detection Based on Convolutional Neural Networks
Jaime Gallego,Anibal Pedraza,Samuel Lopez,Georg Steiner,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Imaging.2018;4(1)20
[DOI]
320An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Alexander D. Kyriazis,Shahriar Noroozizadeh,Amir Refaee,Woongcheol Choi,Lap-Tak Chu,Asma Bashir,Wai Hang Cheng,Rachel Zhao,Dhananjay R. Namjoshi,Septimiu E. Salcudean,Cheryl L. Wellington,Guy Nir
Neuroinformatics.2019;17(3)373
[DOI]
321An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Deniz Sayin Mercadier,Beril Besbinar,Pascal Frossard
Neuroinformatics.2019;17(3)1020
[DOI]
322Quantitative chromogenic immunohistochemical image analysis in cellprofiler software
V. Tollemar,N. Tudzarovski,E. Boberg,A. Törnqvist Andrén,A. Al-Adili,K. Le Blanc,K. Garming Legert,M. Bottai,G. Warfvinge,R.V. Sugars
Cytometry Part A.2018;93(10)1051
[DOI]
323Autofocusing technologies for whole slide imaging and automated microscopy
Zichao Bian,Chengfei Guo,Shaowei Jiang,Jiakai Zhu,Ruihai Wang,Pengming Song,Zibang Zhang,Kazunori Hoshino,Guoan Zheng
Journal of Biophotonics.2020;13(12)1051
[DOI]
324Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
Charlotte Syrykh,Arnaud Abreu,Nadia Amara,Aurore Siegfried,Véronique Maisongrosse,François X. Frenois,Laurent Martin,Cédric Rossi,Camille Laurent,Pierre Brousset
npj Digital Medicine.2020;3(1)1051
[DOI]
325Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
Sadiq Alinsaif,Jochen Lang
npj Digital Medicine.2019;3(1)1424
[DOI]
326A Deep Learning Approach for Breast Invasive Ductal Carcinoma Detection and Lymphoma Multi-Classification in Histological Images
Nadia Brancati,Giuseppe De Pietro,Maria Frucci,Daniel Riccio
IEEE Access.2019;7(1)44709
[DOI]
327A Deep Learning Approach for Breast Invasive Ductal Carcinoma Detection and Lymphoma Multi-Classification in Histological Images
Anthony C. Chang
IEEE Access.2020;7(1)267
[DOI]
328A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
Andrew Lagree,Majidreza Mohebpour,Nicholas Meti,Khadijeh Saednia,Fang-I. Lu,Elzbieta Slodkowska,Sonal Gandhi,Eileen Rakovitch,Alex Shenfield,Ali Sadeghi-Naini,William T. Tran
Scientific Reports.2021;11(1)267
[DOI]
329Inconsistent Performance of Deep Learning Models on Mammogram Classification
Xiaoqin Wang,Gongbo Liang,Yu Zhang,Hunter Blanton,Zachary Bessinger,Nathan Jacobs
Journal of the American College of Radiology.2020;17(6)796
[DOI]
330A hybrid deep learning approach for gland segmentation in prostate histopathological images
Massimo Salvi,Martino Bosco,Luca Molinaro,Alessandro Gambella,Mauro Papotti,U. Rajendra Acharya,Filippo Molinari
Artificial Intelligence in Medicine.2021;115(6)102076
[DOI]
331Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data
Zixiao Lu,Siwen Xu,Wei Shao,Yi Wu,Jie Zhang,Zhi Han,Qianjin Feng,Kun Huang
JCO Clinical Cancer Informatics.2020;115(4)480
[DOI]
332Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data
Kamal Jnawali,Bhargava Chinni,Vikram Dogra,Saugata Sinha,Navalgund Rao,Nicole V. Ruiter,Brett C. Byram
JCO Clinical Cancer Informatics.2019;115(4)51
[DOI]
333In Situ Classification of Cell Types in Human Kidney Tissue Using 3D Nuclear Staining
Andre Woloshuk,Suraj Khochare,Aljohara F. Almulhim,Andrew T. McNutt,Dawson Dean,Daria Barwinska,Michael J. Ferkowicz,Michael T. Eadon,Katherine J. Kelly,Kenneth W. Dunn,Mohammad A. Hasan,Tarek M. El-Achkar,Seth Winfree
Cytometry Part A.2020;115(4)51
[DOI]
334Culture codes of scientific concepts in global scientific online discourse
Dina I. Spicheva,Ekaterina V. Polyanskaya
AI & SOCIETY.2020;35(3)699
[DOI]
335Residual cyclegan for robust domain transformation of histopathological tissue slides
Thomas de Bel,John-Melle Bokhorst,Jeroen van der Laak,Geert Litjens
Medical Image Analysis.2021;70(3)102004
[DOI]
336Residual cyclegan for robust domain transformation of histopathological tissue slides
Mahesh Gour,Sweta Jain,Raghav Agrawal
Medical Image Analysis.2020;1148(3)243
[DOI]
337Residual cyclegan for robust domain transformation of histopathological tissue slides
Animesh Seemendra,Rahul Singh,Sukhendra Singh
Medical Image Analysis.2021;694(3)425
[DOI]
338Mitochondrial Organelle Movement Classification (Fission and Fusion) via Convolutional Neural Network Approach
Muhammad Shahid Iqbal,Bin Luo,Rashid Mehmood,Mayda Abdullateef Alrige,Riad Alharbey
IEEE Access.2019;7(3)86570
[DOI]
339An empirical analysis of machine learning frameworks for digital pathology in medical science
S.K.B. Sangeetha,R Dhaya,Dhruv T Shah,R Dharanidharan,K. Praneeth Sai Reddy
Journal of Physics: Conference Series.2021;1767(1)012031
[DOI]
340The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review
Tomoyuki Fujioka,Mio Mori,Kazunori Kubota,Jun Oyama,Emi Yamaga,Yuka Yashima,Leona Katsuta,Kyoko Nomura,Miyako Nara,Goshi Oda,Tsuyoshi Nakagawa,Yoshio Kitazume,Ukihide Tateishi
Diagnostics.2020;10(12)1055
[DOI]
341The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review
Pablo Guillén-Rondon,Melvin Robinson,Jerry Ebalunode
Diagnostics.2019;979(12)33
[DOI]
342The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review
Smaranjit Ghose,Suhrid Datta,C. Malathy,M. Gayathri
Diagnostics.2021;1333(12)67
[DOI]
343The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review
Bau Pham,Bilwaj Gaonkar,William Whitehead,Steven Moran,Qing Dai,Luke Macyszyn,V. Reggie Edgerton
Diagnostics.2018;1333(12)842
[DOI]
344Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis
Yijiang Chen,Andrew Janowczyk,Anant Madabhushi
JCO Clinical Cancer Informatics.2020;1333(4)221
[DOI]
345Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images
Xiangxue Wang,Andrew Janowczyk,Yu Zhou,Rajat Thawani,Pingfu Fu,Kurt Schalper,Vamsidhar Velcheti,Anant Madabhushi
Scientific Reports.2017;7(1)221
[DOI]
346Immune contexture analysis in immuno-oncology: applications and challenges of multiplex fluorescent immunohistochemistry
Reshma Shakya,Tam Hong Nguyen,Nigel Waterhouse,Rajiv Khanna
Clinical & Translational Immunology.2020;9(10)221
[DOI]
347Application of Single-Cell Approaches to Study Myeloproliferative Neoplasm Biology
Daniel Royston,Adam J. Mead,Bethan Psaila
Hematology/Oncology Clinics of North America.2021;35(2)279
[DOI]
348Cardiac tissue engineering: state-of-the-art methods and outlook
Anh H. Nguyen,Paul Marsh,Lauren Schmiess-Heine,Peter J. Burke,Abraham Lee,Juhyun Lee,Hung Cao
Journal of Biological Engineering.2019;13(1)279
[DOI]
349Artificial intelligence driven next-generation renal histomorphometry
Briana A. Santo,Avi Z. Rosenberg,Pinaki Sarder
Current Opinion in Nephrology and Hypertension.2020;29(3)265
[DOI]
350Digital Microscopy, Image Analysis, and Virtual Slide Repository
Famke Aeffner,Hibret A Adissu,Michael C Boyle,Robert D Cardiff,Erik Hagendorn,Mark J Hoenerhoff,Robert Klopfleisch,Susan Newbigging,Dirk Schaudien,Oliver Turner,Kristin Wilson
ILAR Journal.2018;59(1)66
[DOI]
351Osteoporosis Recognition in Rats under Low-Power Lens Based on Convexity Optimization Feature Fusion
Jie Cai,Wen-guang He,Long Wang,Ke Zhou,Tian-xiu Wu
Scientific Reports.2019;9(1)66
[DOI]
352Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells
Ramraj Chandradevan,Ahmed A. Aljudi,Bradley R. Drumheller,Nilakshan Kunananthaseelan,Mohamed Amgad,David A. Gutman,Lee A. D. Cooper,David L. Jaye
Laboratory Investigation.2020;100(1)98
[DOI]
353Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells
Nitin N. Shirale
Laboratory Investigation.2018;100(1)1
[DOI]
354Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells
Paolo Arcaini,Andrea Bombarda,Silvia Bonfanti,Angelo Gargantini
Laboratory Investigation.2020;100(1)7
[DOI]
355Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells
Adrien Foucart,Olivier Debeir,Christine Decaestecker
Laboratory Investigation.2018;100(1)1
[DOI]
356Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey?
Neil Mehta,Murthy V. Devarakonda
Journal of Allergy and Clinical Immunology.2018;141(6)2019
[DOI]
357Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks
Susan Sheehan,Seamus Mawe,Rachel E. Cianciolo,Ron Korstanje,J. Matthew Mahoney
The American Journal of Pathology.2019;189(9)1786
[DOI]
358Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks
Nelson Zange Tsaku,Sai Chandra Kosaraju,Tasmia Aqila,Mohammad Masum,Dae Hyun Song,Ananda M. Mondal,Hyun Min Koh,Mingon Kang
The American Journal of Pathology.2019;189(9)973
[DOI]
359Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks
Grigoriy Zalyatskiy,Alexey Evstratov,Igor Doronin,Ilya Bolkisev,Konstantin Ushenin
The American Journal of Pathology.2020;2313(9)070016
[DOI]
360Automatic cellularity assessment from post-treated breast surgical specimens
Mohammad Peikari,Sherine Salama,Sharon Nofech-Mozes,Anne L. Martel
Cytometry Part A.2017;91(11)1078
[DOI]
361Automatic cellularity assessment from post-treated breast surgical specimens
Oinam Vivek Singh,Prakash Choudhary,Khelchandra Thongam
Cytometry Part A.2020;1148(11)36
[DOI]
362Clinical deployment of AI for prostate cancer diagnosis
Andrew Janowczyk,Patrick Leo,Mark A Rubin
The Lancet Digital Health.2020;2(8)e383
[DOI]
363Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Jia Qu,Nobuyuki Hiruta,Kensuke Terai,Hirokazu Nosato,Masahiro Murakawa,Hidenori Sakanashi
Journal of Healthcare Engineering.2018;2018(8)1
[DOI]
364Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Yusuf H. Roohani,Eric G. Kiss
Journal of Healthcare Engineering.2018;11039(8)3
[DOI]
365Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Zaneta Swiderska-Chadaj,Zhaoxuan Ma,Nathan Ing,Tomasz Markiewicz,Malgorzata Lorent,Szczepan Cierniak,Ann E. Walts,Beatrice S. Knudsen,Arkadiusz Gertych
Journal of Healthcare Engineering.2019;1011(8)13
[DOI]
366Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
Anibal Pedraza,Jaime Gallego,Samuel Lopez,Lucia Gonzalez,Arvydas Laurinavicius,Gloria Bueno
Journal of Healthcare Engineering.2017;723(8)839
[DOI]
367Advances in the computational and molecular understanding of the prostate cancer cell nucleus
Neil M. Carleton,George Lee,Anant Madabhushi,Robert W. Veltri
Journal of Cellular Biochemistry.2018;119(9)7127
[DOI]
368Machine Learning and Veterinary Pathology: Be Not Afraid!
Krista M. D. La Perle
Veterinary Pathology.2019;56(4)506
[DOI]
369Guided Soft Attention Network for Classification of Breast Cancer Histopathology Images
Heechan Yang,Ji-Ye Kim,Hyongsuk Kim,Shyam P. Adhikari
IEEE Transactions on Medical Imaging.2020;39(5)1306
[DOI]
370Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning
Zhigang Song,Shuangmei Zou,Weixun Zhou,Yong Huang,Liwei Shao,Jing Yuan,Xiangnan Gou,Wei Jin,Zhanbo Wang,Xin Chen,Xiaohui Ding,Jinhong Liu,Chunkai Yu,Calvin Ku,Cancheng Liu,Zhuo Sun,Gang Xu,Yuefeng Wang,Xiaoqing Zhang,Dandan Wang,Shuhao Wang,Wei Xu,Richard C. Davis,Huaiyin Shi
Nature Communications.2020;11(1)1306
[DOI]
371Non-disruptive collagen characterization in clinical histopathology using cross-modality image synthesis
Adib Keikhosravi,Bin Li,Yuming Liu,Matthew W. Conklin,Agnes G. Loeffler,Kevin W. Eliceiri
Communications Biology.2020;3(1)1306
[DOI]
372Non-disruptive collagen characterization in clinical histopathology using cross-modality image synthesis
Aiza M. Romano,Alexander A. Hernandez
Communications Biology.2019;3(1)142
[DOI]
373A Multi-Organ Nucleus Segmentation Challenge
Neeraj Kumar,Ruchika Verma,Deepak Anand,Yanning Zhou,Omer Fahri Onder,Efstratios Tsougenis,Hao Chen,Pheng-Ann Heng,Jiahui Li,Zhiqiang Hu,Yunzhi Wang,Navid Alemi Koohbanani,Mostafa Jahanifar,Neda Zamani Tajeddin,Ali Gooya,Nasir Rajpoot,Xuhua Ren,Sihang Zhou,Qian Wang,Dinggang Shen,Cheng-Kun Yang,Chi-Hung Weng,Wei-Hsiang Yu,Chao-Yuan Yeh,Shuang Yang,Shuoyu Xu,Pak Hei Yeung,Peng Sun,Amirreza Mahbod,Gerald Schaefer,Isabella Ellinger,Rupert Ecker,Orjan Smedby,Chunliang Wang,Benjamin Chidester,That-Vinh Ton,Minh-Triet Tran,Jian Ma,Minh N. Do,Simon Graham,Quoc Dang Vu,Jin Tae Kwak,Akshaykumar Gunda,Raviteja Chunduri,Corey Hu,Xiaoyang Zhou,Dariush Lotfi,Reza Safdari,Antanas Kascenas,Alison O'Neil,Dennis Eschweiler,Johannes Stegmaier,Yanping Cui,Baocai Yin,Kailin Chen,Xinmei Tian,Philipp Gruening,Erhardt Barth,Elad Arbel,Itay Remer,Amir Ben-Dor,Ekaterina Sirazitdinova,Matthias Kohl,Stefan Braunewell,Yuexiang Li,Xinpeng Xie,Linlin Shen,Jun Ma,Krishanu Das Baksi,Mohammad Azam Khan,Jaegul Choo,Adrian Colomer,Valery Naranjo,Linmin Pei,Khan M. Iftekharuddin,Kaushiki Roy,Debotosh Bhattacharjee,Anibal Pedraza,Maria Gloria Bueno,Sabarinathan Devanathan,Saravanan Radhakrishnan,Praveen Koduganty,Zihan Wu,Guanyu Cai,Xiaojie Liu,Yuqin Wang,Amit Sethi
IEEE Transactions on Medical Imaging.2020;39(5)1380
[DOI]
374Artificial Intelligence in Pathology
Hye Yoon Chang,Chan Kwon Jung,Junwoo Isaac Woo,Sanghun Lee,Joonyoung Cho,Sun Woo Kim,Tae-Yeong Kwak
Journal of Pathology and Translational Medicine.2019;53(1)1
[DOI]
375A dataset and a methodology for intraoperative computer-aided diagnosis of a metastatic colon cancer in a liver
Dario Sitnik,Gorana Aralica,Mirko Hadžija,Marijana Popovic Hadžija,Arijana Pacic,Marija Milkovic Periša,Luka Manojlovic,Karolina Krstanac,Andrija Plavetic,Ivica Kopriva
Biomedical Signal Processing and Control.2021;66(1)102402
[DOI]
376On the Scale Invariance in State of the Art CNNs Trained on ImageNet
Mara Graziani,Thomas Lompech,Henning Müller,Adrien Depeursinge,Vincent Andrearczyk
Machine Learning and Knowledge Extraction.2021;3(2)374
[DOI]
377A survey on deep learning in medical image analysis
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen A.W.M. van der Laak,Bram van Ginneken,Clara I. Sánchez
Medical Image Analysis.2017;42(2)60
[DOI]
378A survey on deep learning in medical image analysis
Chunyang Niu,Xiang Li,Zhigang Zhao,Jidong Huo
Medical Image Analysis.2019;42(2)1343
[DOI]
379A survey on deep learning in medical image analysis
Manish Gupta,Chetna Das,Arnab Roy,Prashant Gupta,G. Radhakrishna Pillai,Kamlakar Patole
Medical Image Analysis.2020;42(2)1293
[DOI]
380A survey on deep learning in medical image analysis
S.N Rashid,M.M Fraz,S. Javed
Medical Image Analysis.2020;42(2)68
[DOI]
381A survey on deep learning in medical image analysis
M. Sadeghi,I. Maldonado,N. Abele,J. Haybaeck,A. Boese,P. Poudel,M. Friebe
Medical Image Analysis.2019;42(2)7212
[DOI]
382A survey on deep learning in medical image analysis
Alison K. Cheeseman,Hamid Tizhoosh,Edward R. Vrscay
Medical Image Analysis.2019;11663(2)147
[DOI]
383A survey on deep learning in medical image analysis
Vladimir Khryashchev,Anton Lebedev,Olga Stepanova,Anastasiya Srednyakova
Medical Image Analysis.2020;175(2)295
[DOI]
384Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts
Guy Nir,Soheil Hor,Davood Karimi,Ladan Fazli,Brian F. Skinnider,Peyman Tavassoli,Dmitry Turbin,Carlos F. Villamil,Gang Wang,R. Storey Wilson,Kenneth A. Iczkowski,M. Scott Lucia,Peter C. Black,Purang Abolmaesumi,S. Larry Goldenberg,Septimiu E. Salcudean
Medical Image Analysis.2018;50(2)167
[DOI]
385Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts
Mara Graziani,Thomas Lompech,Henning Müller,Adrien Depeursinge,Vincent Andrearczyk
Medical Image Analysis.2020;12446(2)23
[DOI]
386Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks
Christian Matek,Simone Schwarz,Karsten Spiekermann,Carsten Marr
Nature Machine Intelligence.2019;1(11)538
[DOI]
387Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks
Sebastian Otalora,Oscar Perdomo,Manfredo Atzori,Mats Andersson,Ludwig Jacobsson,Martin Hedlund,Henning Muller
Nature Machine Intelligence.2018;1(11)843
[DOI]
388Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non–Small Cell Lung Cancer
Germán Corredor,Xiangxue Wang,Yu Zhou,Cheng Lu,Pingfu Fu,Konstantinos Syrigos,David L. Rimm,Michael Yang,Eduardo Romero,Kurt A. Schalper,Vamsidhar Velcheti,Anant Madabhushi
Clinical Cancer Research.2019;25(5)1526
[DOI]
389Artificial intelligence and its potential in oncology
Vaishali Y. Londhe,Bhavya Bhasin
Drug Discovery Today.2019;24(1)228
[DOI]
390Classification of digital pathological images of non-Hodgkin's lymphoma subtypes based on the fusion of transfer learning and principal component analysis
Jianfei Zhang,Wensheng Cui,Xiaoyan Guo,Bo Wang,Zhen Wang
Medical Physics.2020;47(9)4241
[DOI]
391Beyond the microscope: interpreting renal biopsy findings in the era of precision medicine
Serena M. Bagnasco
American Journal of Physiology-Renal Physiology.2018;315(6)F1652
[DOI]
392Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning
Khaled Bousabarah,Brian Letzen,Jonathan Tefera,Lynn Savic,Isabel Schobert,Todd Schlachter,Lawrence H. Staib,Martin Kocher,Julius Chapiro,MingDe Lin
Abdominal Radiology.2021;46(1)216
[DOI]
393Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning
Vijaya Gajanan Buddhavarapu,J. Angel Arul Jothi
Abdominal Radiology.2021;1374(1)169
[DOI]
394Validation of machine learning models to detect amyloid pathologies across institutions
Juan C. Vizcarra,Marla Gearing,Michael J. Keiser,Jonathan D. Glass,Brittany N. Dugger,David A. Gutman
Acta Neuropathologica Communications.2020;8(1)169
[DOI]
395Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images
Yajie Hu,Feng Su,Kun Dong,Xinyu Wang,Xinya Zhao,Yumeng Jiang,Jianming Li,Jiafu Ji,Yu Sun
Gastric Cancer.2021;8(1)169
[DOI]
396Predicting Infectious Disease Using Deep Learning and Big Data
Sangwon Chae,Sungjun Kwon,Donghyun Lee
International Journal of Environmental Research and Public Health.2018;15(8)1596
[DOI]
397Predicting Infectious Disease Using Deep Learning and Big Data
Akif Burak Tosun,Filippo Pullara,Michael J. Becich,D. Lansing Taylor,S. Chakra Chennubhotla,Jeffrey L. Fine
International Journal of Environmental Research and Public Health.2020;12090(8)204
[DOI]
398Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans
Parisa gifani,Ahmad Shalbaf,Majid Vafaeezadeh
International Journal of Computer Assisted Radiology and Surgery.2021;16(1)115
[DOI]
399Discovering anomalous patterns in large digital pathology images
Sriram Somanchi,Daniel B. Neill,Anil V. Parwani
Statistics in Medicine.2018;37(25)3599
[DOI]
400A Visually Interpretable Deep Learning Framework for Histopathological Image-Based Skin Cancer Diagnosis
Shancheng Jiang,Huichuan Li,Zhi Jin
IEEE Journal of Biomedical and Health Informatics.2021;25(5)1483
[DOI]
401A Visually Interpretable Deep Learning Framework for Histopathological Image-Based Skin Cancer Diagnosis
Ziqian Luo,Xiangrui Zeng,Zhipeng Bao,Min Xu
IEEE Journal of Biomedical and Health Informatics.2019;25(5)1
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs