Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 737  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Digital slide images for primary diagnostics in breast pathology: a feasibility study
S. Al-Janabi,A. Huisman,S.M. Willems,P.J. Van Diest
Human Pathology.2012;43(12)2318
[DOI]
2Systems biology primer: the basic methods and approaches
Iman Tavassoly,Joseph Goldfarb,Ravi Iyengar
Essays in Biochemistry.2018;62(4)487
[DOI]
3Comparative Analysis Reveals Potential Utility of Digital Microscopy in the Evaluation of Peripheral Blood Smears With Some Barriers to Implementation
Juan C. Gomez-Gelvez,Oleksandr N. Kryvenko,Devon S. Chabot-Richards,Kathryn Foucar,Kedar V. Inamdar,Kristin H. Karner
American Journal of Clinical Pathology.2015;144(1)68
[DOI]
4Rapid microscopy measurement of very large spectral images
Moshe Lindner,Zav Shotan,Yuval Garini
Optics Express.2016;24(9)9511
[DOI]
5A review for cervical histopathology image analysis using machine vision approaches
Chen Li,Hao Chen,Xiaoyan Li,Ning Xu,Zhijie Hu,Dan Xue,Shouliang Qi,He Ma,Le Zhang,Hongzan Sun
Artificial Intelligence Review.2020;53(7)4821
[DOI]
6Application of Artificial Intelligence Technology in Pathological Image Analysis of Breast Tissue
Mengmeng Jia,Xinjian Guo,Fang Tian
Journal of Physics: Conference Series.2020;1642(7)012018
[DOI]
7Application of Artificial Intelligence Technology in Pathological Image Analysis of Breast Tissue
S. Khire,L. Cooper,Y. Park,A. Carter,N. Jayant,J. Saltz
Journal of Physics: Conference Series.2012;1642(7)5424
[DOI]
8A design study investigating augmented reality and photograph annotation in a digitalized grossing workstation
JoyceA Chow,MartinE Törnros,Marie Waltersson,Helen Richard,Madeleine Kusoffsky,ClaesF Lundström,Arianit Kurti
Journal of Pathology Informatics.2017;8(1)31
[DOI]
9A comparison of cervical histopathology variability using whole slide digitized images versus glass slides: experience with a statewide registry
Julia C. Gage,Nancy Joste,Brigette M. Ronnett,Mark Stoler,William C. Hunt,Mark Schiffman,Cosette M. Wheeler
Human Pathology.2013;44(11)2542
[DOI]
10Telepathology in Low Resource African Settings
Nnamdi Orah,Olorunda Rotimi
Frontiers in Public Health.2019;7(11)2542
[DOI]
11Telepathology in Low Resource African Settings
Adebowale J. Adeniran
Frontiers in Public Health.2019;7(11)413
[DOI]
12Characterizing Immune Responses in Whole Slide Images of Cancer With Digital Pathology and Pathomics
Rajarsi Gupta,Han Le,John Van Arnam,David Belinsky,Mahmudul Hasan,Dimitris Samaras,Tahsin Kurc,Joel H. Saltz
Current Pathobiology Reports.2020;8(4)133
[DOI]
13A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association
Mark D. Zarella,Douglas Bowman;,Famke Aeffner,Navid Farahani,Albert Xthona;,Syeda Fatima Absar,Anil Parwani,Marilyn Bui,Douglas J. Hartman
Archives of Pathology & Laboratory Medicine.2019;143(2)222
[DOI]
14A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association
Fangjian Han,Li Yu,Yi Jiang
Archives of Pathology & Laboratory Medicine.2020;143(2)2953
[DOI]
15A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association
Wael Saafin,Gerald Schaefer
Archives of Pathology & Laboratory Medicine.2017;723(2)551
[DOI]
16A software tool for the quantification of metastatic colony growth dynamics and size distributions in vitro and in vivo
Soumitra Bhoyar,Inês Godet,Josh W. DiGiacomo,Daniele M. Gilkes,Thomas Abraham
PLOS ONE.2018;13(12)e0209591
[DOI]
17Single image super-resolution for whole slide image using convolutional neural networks and self-supervised color normalization
Bin Li,Adib Keikhosravi,Agnes G. Loeffler,Kevin W. Eliceiri
Medical Image Analysis.2021;68(12)101938
[DOI]
18Single image super-resolution for whole slide image using convolutional neural networks and self-supervised color normalization
Metin N. Gurcan,John E. Tomaszewski,Jin Tae Kwak,Stephen M. Hewitt
Medical Image Analysis.2017;10140(12)1014008
[DOI]
19Digital Imaging in Pathology: Whole-Slide Imaging and Beyond
Farzad Ghaznavi,Andrew Evans,Anant Madabhushi,Michael Feldman
Annual Review of Pathology: Mechanisms of Disease.2013;8(1)331
[DOI]
20Direct Cellularity Estimation on Breast Cancer Histopathology Images Using Transfer Learning
Ziang Pei,Shuangliang Cao,Lijun Lu,Wufan Chen
Computational and Mathematical Methods in Medicine.2019;2019(1)1
[DOI]
21Digital Microscopy, Image Analysis, and Virtual Slide Repository
Famke Aeffner,Hibret A Adissu,Michael C Boyle,Robert D Cardiff,Erik Hagendorn,Mark J Hoenerhoff,Robert Klopfleisch,Susan Newbigging,Dirk Schaudien,Oliver Turner,Kristin Wilson
ILAR Journal.2018;59(1)66
[DOI]
22Assessment Standards
Katherine Shea,Sharron Stewart,Rodney Rouse
Toxicologic Pathology.2014;42(6)1004
[DOI]
23A quantitative approach to evaluate image quality of whole slide imaging scanners
Prarthana Shrestha,R Kneepkens,J Vrijnsen,D Vossen,E Abels,B Hulsken
Journal of Pathology Informatics.2016;7(1)56
[DOI]
24Enhancing the Value of Histopathological Assessment of Allograft Biopsy Monitoring
Michelle A. Wood-Trageser,Andrew J. Lesniak,Anthony J. Demetris
Transplantation.2019;103(7)1306
[DOI]
25Digital imaging for cytopathology: are we there yet?
L. Pantanowitz,A. V. Parwani,W. E. Khalbuss
Cytopathology.2011;22(2)73
[DOI]
26Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy
Matthew K. Creech,Jing Wang,Xiaolin Nan,Summer L. Gibbs
Scientific Reports.2017;7(1)73
[DOI]
27Analysis of quantitative phase obtained by digital holography on H&E-stained pathological samples
Syukran Hakim Bin Norazman,Tomoya Nakamura,Fumikazu Kimura,Masahiro Yamaguchi
Artificial Life and Robotics.2019;24(1)38
[DOI]
28Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer
Orazio Schillaci,Manuel Scimeca,Nicola Toschi,Rita Bonfiglio,Nicoletta Urbano,Elena Bonanno
Contrast Media & Molecular Imaging.2019;2019(1)1
[DOI]
29Whole-slide image focus quality: Automatic assessment and impact on ai cancer detection
Timo Kohlberger,Yun Liu,Melissa Moran,Po-HsuanCameron Chen,Trissia Brown,JasonD Hipp,CraigH Mermel,MartinC Stumpe
Journal of Pathology Informatics.2019;10(1)39
[DOI]
30Whole-slide image focus quality: Automatic assessment and impact on ai cancer detection
Vinicius Andreoli Petrolini,Eduardo Beckhauser,Alexandre Savaris,Maria Ines Meurer,Aldo von Wangenheim,Dirk Krechel
Journal of Pathology Informatics.2019;10(1)684
[DOI]
31Performance of a simple chromatin-rich segmentation algorithm in quantifying basal cell carcinoma from histology images
Kyle Lesack,Christopher Naugler
BMC Research Notes.2012;5(1)684
[DOI]
32Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response
Maki Ogura,Yoichiro Yamamoto,Hitoshi Miyashita,Hiroyuki Kumamoto,Manabu Fukumoto
Medical Molecular Morphology.2016;49(2)76
[DOI]
33Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response
Sébastien Ourselin,Martin A. Styner,Josh Moore,Melissa Linkert,Colin Blackburn,Mark Carroll,Richard K. Ferguson,Helen Flynn,Kenneth Gillen,Roger Leigh,Simon Li,Dominik Lindner,William J. Moore,Andrew J. Patterson,Blazej Pindelski,Balaji Ramalingam,Emil Rozbicki,Aleksandra Tarkowska,Petr Walczysko,Chris Allan,Jean-Marie Burel,Jason Swedlow
Medical Molecular Morphology.2015;9413(2)941307
[DOI]
34IHC Color Histograms for Unsupervised Ki67 Proliferation Index Calculation
Rokshana S. Geread,Peter Morreale,Robert D. Dony,Emily Brouwer,Geoffrey A. Wood,Dimitrios Androutsos,April Khademi
Frontiers in Bioengineering and Biotechnology.2019;7(2)941307
[DOI]
35IHC Color Histograms for Unsupervised Ki67 Proliferation Index Calculation
Farzana Shafique,Dalal Al-Tamimi,Haitham Kussaibi
Frontiers in Bioengineering and Biotechnology.2015;7(2)298
[DOI]
36Machine Learning Methods for Histopathological Image Analysis
Daisuke Komura,Shumpei Ishikawa
Computational and Structural Biotechnology Journal.2018;16(2)34
[DOI]
37Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts
Guy Nir,Soheil Hor,Davood Karimi,Ladan Fazli,Brian F. Skinnider,Peyman Tavassoli,Dmitry Turbin,Carlos F. Villamil,Gang Wang,R. Storey Wilson,Kenneth A. Iczkowski,M. Scott Lucia,Peter C. Black,Purang Abolmaesumi,S. Larry Goldenberg,Septimiu E. Salcudean
Medical Image Analysis.2018;50(2)167
[DOI]
38Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images
Guy Nir,Davood Karimi,S. Larry Goldenberg,Ladan Fazli,Brian F. Skinnider,Peyman Tavassoli,Dmitry Turbin,Carlos F. Villamil,Gang Wang,Darby J. S. Thompson,Peter C. Black,Septimiu E. Salcudean
JAMA Network Open.2019;2(3)e190442
[DOI]
39Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images
Gerald Schaefer
JAMA Network Open.2017;2(3)1
[DOI]
40Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends
Naira Elazab,Hassan Soliman,Shaker El-Sappagh,S. M. Riazul Islam,Mohammed Elmogy
Mathematics.2020;8(11)1863
[DOI]
41Validation of whole-slide imaging in the primary diagnosis of liver biopsies in a University Hospital
Adela Saco,Alba Diaz,Monica Hernandez,Daniel Martinez,Carla Montironi,Paola Castillo,Natalia Rakislova,Marta del Pino,Antonio Martinez,Jaume Ordi
Digestive and Liver Disease.2017;49(11)1240
[DOI]
42[Paper] Automatic Quality Evaluation of Whole Slide Images for the Practical Use of Whole Slide Imaging Scanner
Hossain Md Shakhawat,Tomoya Nakamura,Fumikazu Kimura,Yukako Yagi,Masahiro Yamaguchi
ITE Transactions on Media Technology and Applications.2020;8(4)252
[DOI]
43Clinical Application of Image Analysis in Pathology
Toby C. Cornish
Advances in Anatomic Pathology.2020;27(4)227
[DOI]
44Quantitative Histopathology of Stained Tissues using Color Spatial Light Interference Microscopy (cSLIM)
Hassaan Majeed,Adib Keikhosravi,Mikhail E. Kandel,Tan H. Nguyen,Yuming Liu,Andre Kajdacsy-Balla,Krishnarao Tangella,Kevin W. Eliceiri,Gabriel Popescu
Scientific Reports.2019;9(1)227
[DOI]
45Morphology in the Digital Age: Integrating High-Resolution Description of Structural Alterations With Phenotypes and Genotypes
Cynthia C. Nast,Kevin V. Lemley,Jeffrey B. Hodgin,Serena Bagnasco,Carmen Avila-Casado,Stephen M. Hewitt,Laura Barisoni
Seminars in Nephrology.2015;35(3)266
[DOI]
46Effect of color visualization and display hardware on the visual assessment of pseudocolor medical images
Silvina Zabala-Travers,Mina Choi,Wei-Chung Cheng,Aldo Badano
Medical Physics.2015;42(6Part1)2942
[DOI]
47Morphologists overestimate the nuclear-to-cytoplasmic ratio
Mingjuan L. Zhang,Alan X. Guo,Christopher J. VandenBussche
Cancer Cytopathology.2016;124(9)669
[DOI]
48It’s about time
Umesh Kapur
Journal of Histotechnology.2017;40(3)65
[DOI]
49Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges
Klára Šcupáková,Benjamin Balluff,Caitlin Tressler,Tobi Adelaja,Ron M.A. Heeren,Kristine Glunde,Go¨khan Ertaylan
Clinical Chemistry and Laboratory Medicine (CCLM).2020;58(6)914
[DOI]
50Color accuracy and reproducibility in whole slide imaging scanners
Prarthana Shrestha,Bas Hulsken
Journal of Medical Imaging.2014;1(2)027501
[DOI]
51Color accuracy and reproducibility in whole slide imaging scanners
Liron Pantanowitz,Anil V. Parwani
Journal of Medical Imaging.2016;1(2)71
[DOI]
52Warthin-like Mucoepidermoid Carcinoma
Kenichiro Ishibashi,Yohei Ito,Ayako Masaki,Kana Fujii,Shintaro Beppu,Takeo Sakakibara,Hisashi Takino,Hiroshi Takase,Kei Ijichi,Kazuo Shimozato,Hiroshi Inagaki
American Journal of Surgical Pathology.2015;39(11)1479
[DOI]
53Histomorphometric Evaluation of Critical-Sized Bone Defects Using Osteomeasure and Aperio Image Analysis Systems
Flavia Medeiros Savi,Felicity Lawrence,Dietmar Werner Hutmacher,Maria Ann Woodruff,Laura Jane Bray,Marie-Luise Wille
Tissue Engineering Part C: Methods.2019;25(12)732
[DOI]
54Multiplexed coded illumination for Fourier Ptychography with an LED array microscope
Lei Tian,Xiao Li,Kannan Ramchandran,Laura Waller
Biomedical Optics Express.2014;5(7)2376
[DOI]
55Multiplexed coded illumination for Fourier Ptychography with an LED array microscope
Yang Yu,Jiahao Wang,Ha Eun Chun,Yumeng Xu,Eliza Li Shan Fong,Aileen Wee,Hanry Yu
Biomedical Optics Express.2021;5(7)208
[DOI]
56What May the Future Hold for Histotechnologists?
Michael Titford,Blythe Bowman
Laboratory Medicine.2012;43(suppl 2)e5
[DOI]
57What May the Future Hold for Histotechnologists?
Yanning Zhou,Omer Fahri Onder,Qi Dou,Efstratios Tsougenis,Hao Chen,Pheng-Ann Heng
Laboratory Medicine.2019;11492(suppl 2)682
[DOI]
58Long-Range Diagnosis of and Support for Skin Conditions in Field Settings
Victoria Williams,Carrie Kovarik
Tropical Medicine and Infectious Disease.2018;3(3)84
[DOI]
59Objective and Subjective Assessment of Digital Pathology Image Quality
Prarthana Shrestha,Rik Kneepkens,Gijs van Elswijk,Jeroen Vrijnsen,Roxana Ion,Dirk Verhagen,Esther Abels,Dirk Vossen,and Bas Hulsken
AIMS Medical Science.2015;2(1)65
[DOI]
60Diagnostic Validation of a Whole-Slide Imaging Scanner in Cytological Samples: Diagnostic Accuracy and Comparison With Light Microscopy
Federico Bonsembiante,Ugo Bonfanti,Francesco Cian,Laura Cavicchioli,Beatrice Zattoni,Maria Elena Gelain
Veterinary Pathology.2019;56(3)429
[DOI]
61Quantitative neurotoxicology: Potential role of artificial intelligence/deep learning approach
Anshul Srivastava,Joseph P. Hanig
Journal of Applied Toxicology.2020;56(3)429
[DOI]
62Validating Whole Slide Imaging for Diagnostic Purposes in Pathology: Guideline from the College of American Pathologists Pathology and Laboratory Quality Center
Liron Pantanowitz,John H. Sinard,Walter H. Henricks,Lisa A. Fatheree,Alexis B. Carter,Lydia Contis,Bruce A. Beckwith,Andrew J. Evans,Avtar Lal,Anil V. Parwani
Archives of Pathology & Laboratory Medicine.2013;137(12)1710
[DOI]
63Validating Whole Slide Imaging for Diagnostic Purposes in Pathology: Guideline from the College of American Pathologists Pathology and Laboratory Quality Center
Rui Lebre,Rui Jesus,Pedro Nunes,Carlos Costa
Archives of Pathology & Laboratory Medicine.2021;1400(12)407
[DOI]
64Applications and challenges of digital pathology and whole slide imaging
C Higgins
Biotechnic & Histochemistry.2015;90(5)341
[DOI]
65Current usage and future trends in gross digital photography in Canada
Christopher L Horn,Lawrence DeKoning,Paul Klonowski,Christopher Naugler
BMC Medical Education.2014;14(1)341
[DOI]
66Current usage and future trends in gross digital photography in Canada
Inderpreet Kaur,Kamaljit Singh Saini,Jaiteg Singh Khaira
BMC Medical Education.2020;14(1)263
[DOI]
67Supervised non-negative matrix factorization methods for MALDI imaging applications
Johannes Leuschner,Maximilian Schmidt,Pascal Fernsel,Delf Lachmund,Tobias Boskamp,Peter Maass,Robert Murphy
Bioinformatics.2019;35(11)1940
[DOI]
68Automated Quantification of Immunohistochemical Staining of Large Animal Brain Tissue Using QuPath Software
Nicholas J. Morriss,Grace M. Conley,Sara M. Ospina,William P Meehan III,Jianhua Qiu,Rebekah Mannix
Neuroscience.2020;429(11)235
[DOI]
69Automated Quantification of Immunohistochemical Staining of Large Animal Brain Tissue Using QuPath Software
Ralf Schönmeyer,Maria Athelogou,Günter Schmidt,Gerd Binnig
Neuroscience.2014;429(11)13
[DOI]
70Compressed-sampling-based Fourier ptychographic microscopy
Kaicheng Huang,Wangwei Hui,Qing Ye,Senlin Jin,Hongyang Zhao,Qiushuai Shi,Jianguo Tian,Wenyuan Zhou
Optics Communications.2019;452(11)18
[DOI]
71Central Pathology Review for Phase III Clinical Trials: The Enabling Effect of Virtual Microscopy
Pawel Mroz,Anil V. Parwani,Piotr Kulesza
Archives of Pathology & Laboratory Medicine.2013;137(4)492
[DOI]
72Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives
Octavian Sabin Tataru,Mihai Dorin Vartolomei,Jens J. Rassweiler,O?an Virgil,Giuseppe Lucarelli,Francesco Porpiglia,Daniele Amparore,Matteo Manfredi,Giuseppe Carrieri,Ugo Falagario,Daniela Terracciano,Ottavio de Cobelli,Gian Maria Busetto,Francesco Del Giudice,Matteo Ferro
Diagnostics.2021;11(2)354
[DOI]
73Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives
Aditya Sriram,Shivam Kalra,Morteza Babaie,Brady Kieffer,W. Al Drobi,Shahryar Rahnamayan,Hany Kashani,Hamid R. Tizhoosh
Diagnostics.2020;12299(2)227
[DOI]
74Digital Imaging in Pathology
Seung Park,Liron Pantanowitz,Anil Vasdev Parwani
Clinics in Laboratory Medicine.2012;32(4)557
[DOI]
75Multiview boosting digital pathology analysis of prostate cancer
Jin Tae Kwak,Stephen M. Hewitt
Computer Methods and Programs in Biomedicine.2017;142(4)91
[DOI]
76Multiview boosting digital pathology analysis of prostate cancer
Metin N. Gurcan,Anant Madabhushi,Prarthana Shrestha,Bas Hulsken
Computer Methods and Programs in Biomedicine.2014;9041(4)904112
[DOI]
77A new era: artificial intelligence and machine learning in prostate cancer
S. Larry Goldenberg,Guy Nir,Septimiu E. Salcudean
Nature Reviews Urology.2019;16(7)391
[DOI]
78Nuclear Architecture Analysis of Prostate Cancer via Convolutional Neural Networks
Jin Tae Kwak,Stephen M. Hewitt
IEEE Access.2017;5(7)18526
[DOI]
79Screening and dotting virtual slides: A new challenge for cytotechnologists
Walid E. Khalbuss,Jackie Cuda,Ioan C. Cucoranu
CytoJournal.2013;10(7)22
[DOI]
80FaceTime validation study: Low-cost streaming video for cytology adequacy assessment
Shweta Agarwal,Lichao Zhao,Roy Zhang,Lewis Hassell
Cancer Cytopathology.2016;124(3)213
[DOI]
81The Use of Digital Microscopy to Compare the Thicknesses of Normal Corneas and Ex Vivo Rejected Corneal Grafts with a Focus on the Descemet’s Membrane
Taíse Tognon,Sabrina Bergeron,Christina Mastromonaco,Kleyton Barella,Adriano Pasqualotti,Laura Nunez,Francisco Murta,Luciene Barbosa de Sousa,Mauro Campos,Miguel Noel Nascentes Burnier
Journal of Ophthalmology.2019;2019(3)1
[DOI]
82Automated measurement of MIB-1 positive area as an alternative to counting in follicular lymphoma
Jeroen A. W. M. van der Laak,Nienke van Engelen,Maarten Melissen,Konnie M. Hebeda
Cytometry Part A.2012;81A(6)527
[DOI]
83Automated measurement of MIB-1 positive area as an alternative to counting in follicular lymphoma
Yuhan Liu,Minzhi Yin,Shiliang Sun
Cytometry Part A.2018;11012(6)545
[DOI]
84Automated measurement of MIB-1 positive area as an alternative to counting in follicular lymphoma
Weixin Jiang,Yongbing Zhang,Qionghai Dai
Cytometry Part A.2016;11012(6)1
[DOI]
85Automated measurement of MIB-1 positive area as an alternative to counting in follicular lymphoma
Mateo Puerto,Tania Vargas,Angel Cruz-Roa
Cytometry Part A.2016;11012(6)1
[DOI]
86Whole-Slide Imaging and Automated Image Analysis
J. D. Webster,R. W. Dunstan
Veterinary Pathology.2014;51(1)211
[DOI]
87PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys
George O. Barros,Brenda Navarro,Angelo Duarte,Washington L. C. dos-Santos
Scientific Reports.2017;7(1)211
[DOI]
88PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys
Cecília Lantos,Steven M. Kornblau,Amina A. Qutub
Scientific Reports.2018;7(1)211
[DOI]
89Histological Quantitation of Brain Injury Using Whole Slide Imaging: A Pilot Validation Study in Mice
Zhenzhou Chen,Dmitriy Shin,Shanyan Chen,Kovalenko Mikhail,Orr Hadass,Brittany N. Tomlison,Dmitry Korkin,Chi-Ren Shyu,Jiankun Cui,Douglas C. Anthony,Zezong Gu,Jinglu Ai
PLoS ONE.2014;9(3)e92133
[DOI]
90PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
Dmitriy Shin,Mikhail Kovalenko,Ilker Ersoy,Yu Li,Donald Doll,Chi-Ren Shyu,Richard Hammer
Journal of Pathology Informatics.2017;8(1)29
[DOI]
91“Slide less pathology”: Fairy tale or reality?
M Indu,R Rathy,MP Binu
Journal of Oral and Maxillofacial Pathology.2016;20(2)284
[DOI]
92Comparing digital and optical microscopy diagnoses of breast and prostate core biopsies
Ana Richelia Jara-Lazaro,Puay Hoon Tan
Pathology.2012;44(1)46
[DOI]
93Artificial intelligence in the diagnosis of prostate cancer
G.V. Popov,A.A. Chub,Yu.V. Lerner,L.V. Tsoy,A.V. Dubinina,V.A. Varshavsky
Arkhiv patologii.2021;83(3)38
[DOI]
94Construction and implementation of a comprehensive hematopathology virtual teaching set
Christine G. Roth,Bryan J. Dangott,Tom Harper,Jon Duboy,Fiona E. Craig,Anil V. Parwani
Journal of Hematopathology.2012;5(4)297
[DOI]
95Twenty years of digital pathology: An overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives
Liron Pantanowitz,Ashish Sharma,AlexisB Carter,Tahsin Kurc,Alan Sussman,Joel Saltz
Journal of Pathology Informatics.2018;9(1)40
[DOI]
96Digital Imaging in Cytopathology
Walid E. Khalbuss,Liron Pantanowitz,Anil V. Parwani
Pathology Research International.2011;2011(1)1
[DOI]
97The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine
Christof A. Bertram,Robert Klopfleisch
Veterinary Pathology.2017;54(5)756
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs