Journal of Pathology Informatics Journal of Pathology Informatics
Contact us | Home | Login   |  Users Online: 739  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


This article has been cited by
1Development of a prognostic model for mortality in COVID-19 infection using machine learning
Adam L. Booth,Elizabeth Abels,Peter McCaffrey
Modern Pathology.2021;34(3)522
[DOI]
2Artificial intelligence technology applications in the pathologic diagnosis of the gastrointestinal tract
Leonardo S Lino-Silva,Diana L Xinaxtle
Future Oncology.2020;16(34)2845
[DOI]
3Artificial intelligence technology applications in the pathologic diagnosis of the gastrointestinal tract
Yu Tian,Gabriel Maicas,Leonardo Zorron Cheng Tao Pu,Rajvinder Singh,Johan W. Verjans,Gustavo Carneiro
Future Oncology.2020;12266(34)274
[DOI]
4Evaluation of a Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides
Jason W. Wei,Arief A. Suriawinata,Louis J. Vaickus,Bing Ren,Xiaoying Liu,Mikhail Lisovsky,Naofumi Tomita,Behnaz Abdollahi,Adam S. Kim,Dale C. Snover,John A. Baron,Elizabeth L. Barry,Saeed Hassanpour
JAMA Network Open.2020;3(4)e203398
[DOI]
5Artificial intelligence and computational pathology
Miao Cui,David Y. Zhang
Laboratory Investigation.2021;101(4)412
[DOI]
6Emerging role of deep learning-based artificial intelligence in tumor pathology
Yahui Jiang,Meng Yang,Shuhao Wang,Xiangchun Li,Yan Sun
Cancer Communications.2020;40(4)154
[DOI]
7Emerging role of deep learning-based artificial intelligence in tumor pathology
Francesco Ponzio,Enrico Macii,Elisa Ficarra,Santa Di Cataldo
Cancer Communications.2019;1024(4)114
[DOI]
8Emerging role of deep learning-based artificial intelligence in tumor pathology
Behnaz Abdollahi,Naofumi Tomita,Saeed Hassanpour
Cancer Communications.2020;186(4)167
[DOI]
9Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology
Sandip Kumar Patel,Bhawana George,Vineeta Rai
Frontiers in Pharmacology.2020;11(4)167
[DOI]
10Colorectal Disease Classification Using Efficiently Scaled Dilation in Convolutional Neural Network
Sahadev Poudel,Yoon Jae Kim,Duc My Vo,Sang-Woong Lee
IEEE Access.2020;8(4)99227
[DOI]
11Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods
Huu-Giao Nguyen,Annika Blank,Heather E. Dawson,Alessandro Lugli,Inti Zlobec
Scientific Reports.2021;11(1)99227
[DOI]
12Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods
Saloni Agarwal,Mohamedelfatih Eltigani,Osman Abaker,Xinyi Zhang,Ovidiu Daescu,Donald A. Barkauskas,Erin R. Rudzinski,Patrick Leavey
Scientific Reports.2020;11(1)1
[DOI]
13Automating the Paris System for urine cytopathology—A hybrid deep-learning and morphometric approach
Louis J. Vaickus,Arief A. Suriawinata,Jason W. Wei,Xiaoying Liu
Cancer Cytopathology.2019;127(2)98
[DOI]
14Deep learning based tissue analysis predicts outcome in colorectal cancer
Dmitrii Bychkov,Nina Linder,Riku Turkki,Stig Nordling,Panu E. Kovanen,Clare Verrill,Margarita Walliander,Mikael Lundin,Caj Haglund,Johan Lundin
Scientific Reports.2018;8(1)98
[DOI]
15Prediction of early colorectal cancer metastasis by machine learning using digital slide images
Manabu Takamatsu,Noriko Yamamoto,Hiroshi Kawachi,Akiko Chino,Shoichi Saito,Masashi Ueno,Yuichi Ishikawa,Yutaka Takazawa,Kengo Takeuchi
Computer Methods and Programs in Biomedicine.2019;178(1)155
[DOI]
16Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning
Changjiang Zhou,Yi Jin,Yuzong Chen,Shan Huang,Rengpeng Huang,Yuhong Wang,Youcai Zhao,Yao Chen,Lingchuan Guo,Jun Liao
Computerized Medical Imaging and Graphics.2021;88(1)101861
[DOI]
17Deep Learning in Microscopy Image Analysis: A Survey
Fuyong Xing,Yuanpu Xie,Hai Su,Fujun Liu,Lin Yang
IEEE Transactions on Neural Networks and Learning Systems.2018;29(10)4550
[DOI]
18In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer
Martin Halicek,Himar Fabelo,Samuel Ortega,Gustavo M. Callico,Baowei Fei
Cancers.2019;11(6)756
[DOI]
19Closing the translation gap: AI applications in digital pathology
David F. Steiner,Po-Hsuan Cameron Chen,Craig H. Mermel
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2021;1875(1)188452
[DOI]
20Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus
Rasoul Sali,Nazanin Moradinasab,Shan Guleria,Lubaina Ehsan,Philip Fernandes,Tilak U. Shah,Sana Syed,Donald E. Brown
Journal of Personalized Medicine.2020;10(4)141
[DOI]
21Osteoporosis Recognition in Rats under Low-Power Lens Based on Convexity Optimization Feature Fusion
Jie Cai,Wen-guang He,Long Wang,Ke Zhou,Tian-xiu Wu
Scientific Reports.2019;9(1)141
[DOI]
22Deep Learning Techniques for the Classification of Colorectal Cancer Tissue
Min-Jen Tsai,Yu-Han Tao
Electronics.2021;10(14)1662
[DOI]
23Machine learning in haematological malignancies
Nathan Radakovich,Matthew Nagy,Aziz Nazha
The Lancet Haematology.2020;7(7)e541
[DOI]
24Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology
Cesare Lancellotti,Pierandrea Cancian,Victor Savevski,Soumya Rupa Reddy Kotha,Filippo Fraggetta,Paolo Graziano,Luca Di Tommaso
Cells.2021;10(4)787
[DOI]
25Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning
Yuan Li,Yang Zhang,Enlong Zhang,Yongye Chen,Qizheng Wang,Ke Liu,Hon J. Yu,Huishu Yuan,Ning Lang,Min-Ying Su
European Radiology.2021;10(4)787
[DOI]
26The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review
Yoichi Hayashi
Frontiers in Robotics and AI.2019;6(4)787
[DOI]
27Predicting primary site of secondary liver cancer with a neural estimator of metastatic origin
Geoffrey F. Schau,Erik A. Burlingame,Guillaume Thibault,Tauangtham Anekpuritanang,Ying Wang,Joe W. Gray,Christopher Corless,Young H. Chang
Journal of Medical Imaging.2020;7(01)1
[DOI]
28Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases
M Alvaro Berbís,José Aneiros-Fernández,F Javier Mendoza Olivares,Enrique Nava,Antonio Luna
World Journal of Gastroenterology.2021;27(27)4395
[DOI]
29Deep Learning Models for Colorectal Polyps
Ornela Bardhi,Daniel Sierra-Sosa,Begonya Garcia-Zapirain,Luis Bujanda
Information.2021;12(6)245
[DOI]
30Applications of deep learning for the analysis of medical data
Hyun-Jong Jang,Kyung-Ok Cho
Archives of Pharmacal Research.2019;42(6)492
[DOI]
31Applications of deep learning for the analysis of medical data
Jiahao Lu,Nataša Sladoje,Christina Runow Stark,Eva Darai Ramqvist,Jan-Michaél Hirsch,Joakim Lindblad
Archives of Pharmacal Research.2020;12132(6)249
[DOI]
32Applications of deep learning for the analysis of medical data
Tuan Dinh Truong,Hien Thi-Thu Pham
Archives of Pharmacal Research.2020;69(6)531
[DOI]
33Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology
Hiroshi Yoshida,Tomoharu Kiyuna
World Journal of Gastroenterology.2021;27(21)2818
[DOI]
34Artificial intelligence in gastroenterology and hepatology: Status and challenges
Jia-Sheng Cao,Zi-Yi Lu,Ming-Yu Chen,Bin Zhang,Sarun Juengpanich,Jia-Hao Hu,Shi-Jie Li,Win Topatana,Xue-Yin Zhou,Xu Feng,Ji-Liang Shen,Yu Liu,Xiu-Jun Cai
World Journal of Gastroenterology.2021;27(16)1664
[DOI]
35Deep Learning Models for Gastric Signet Ring Cell Carcinoma Classification in Whole Slide Images
Fahdi Kanavati,Shin Ichihara,Michael Rambeau,Osamu Iizuka,Koji Arihiro,Masayuki Tsuneki
Technology in Cancer Research & Treatment.2021;20(16)153303382110279
[DOI]
36CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance
Sara P. Oliveira,Pedro C. Neto,João Fraga,Diana Montezuma,Ana Monteiro,João Monteiro,Liliana Ribeiro,Sofia Gonçalves,Isabel M. Pinto,Jaime S. Cardoso
Scientific Reports.2021;11(1)153303382110279
[DOI]
37Artificial intelligence in perioperative management of major gastrointestinal surgeries
Sohan Lal Solanki,Saneya Pandrowala,Abhirup Nayak,Manish Bhandare,Reshma P Ambulkar,Shailesh V Shrikhande
World Journal of Gastroenterology.2021;27(21)2758
[DOI]
38Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours
Osamu Iizuka,Fahdi Kanavati,Kei Kato,Michael Rambeau,Koji Arihiro,Masayuki Tsuneki
Scientific Reports.2020;10(1)2758
[DOI]
39

The Increasing Role of Artificial Intelligence in Health Care: Will Robots Replace Doctors in the Future?

Abdullah Shuaib,Husain Arian,Ali Shuaib
International Journal of General Medicine.2020;Volume 13(1)891
[DOI]
40Applications of machine learning in drug discovery and development
Jessica Vamathevan,Dominic Clark,Paul Czodrowski,Ian Dunham,Edgardo Ferran,George Lee,Bin Li,Anant Madabhushi,Parantu Shah,Michaela Spitzer,Shanrong Zhao
Nature Reviews Drug Discovery.2019;18(6)463
[DOI]
41Artificial Intelligence in Cancer Research and Precision Medicine
Bhavneet Bhinder,Coryandar Gilvary,Neel S. Madhukar,Olivier Elemento
Cancer Discovery.2021;11(4)900
[DOI]
42Enhanced Image-Based Endoscopic Pathological Site Classification Using an Ensemble of Deep Learning Models
Dat Tien Nguyen,Min Beom Lee,Tuyen Danh Pham,Ganbayar Batchuluun,Muhammad Arsalan,Kang Ryoung Park
Sensors.2020;20(21)5982
[DOI]
43A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images
Fahdi Kanavati,Gouji Toyokawa,Seiya Momosaki,Hiroaki Takeoka,Masaki Okamoto,Koji Yamazaki,Sadanori Takeo,Osamu Iizuka,Masayuki Tsuneki
Scientific Reports.2021;11(1)5982
[DOI]
44Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
Andrea Bizzego,Nicole Bussola,Marco Chierici,Valerio Maggio,Margherita Francescatto,Luca Cima,Marco Cristoforetti,Giuseppe Jurman,Cesare Furlanello,Gustavo Rohde
PLOS Computational Biology.2019;15(3)e1006269
[DOI]
45Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
A. Bizzego,N. Bussola,D. Salvalai,M. Chierici,V. Maggio,G. Jurman,C. Furlanello
PLOS Computational Biology.2019;15(3)1
[DOI]
46Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng-Ann Heng
IEEE Transactions on Cybernetics.2020;50(9)3950
[DOI]
47Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis
Jordi Martorell-Marugán,Siham Tabik,Yassir Benhammou,Coral del Val,Igor Zwir,Francisco Herrera,Pedro Carmona-Sáez
IEEE Transactions on Cybernetics.2019;50(9)37
[DOI]
48Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning
Wen-Yu Chuang,Shang-Hung Chang,Wei-Hsiang Yu,Cheng-Kun Yang,Chi-Ju Yeh,Shir-Hwa Ueng,Yu-Jen Liu,Tai-Di Chen,Kuang-Hua Chen,Yi-Yin Hsieh,Yi Hsia,Tong-Hong Wang,Chuen Hsueh,Chang-Fu Kuo,Chao-Yuan Yeh
Cancers.2020;12(2)507
[DOI]
49Recognition of Lung Adenocarcinoma-specific Gene Pairs Based on Genetic Algorithm and Establishment of a Deep Learning Prediction Model
Zhongwei Zhao,Xiaoxi Fan,Lili Yang,Jingjing Song,Shiji Fang,Jianfei Tu,Minjiang Chen,Jie Li,Liyun Zheng,Fazong Wu,Dengke Zhang,Xihui Ying,Jiansong Ji
Combinatorial Chemistry & High Throughput Screening.2019;22(4)256
[DOI]
50Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies
Chaofeng Li,Bingzhong Jing,Liangru Ke,Bin Li,Weixiong Xia,Caisheng He,Chaonan Qian,Chong Zhao,Haiqiang Mai,Mingyuan Chen,Kajia Cao,Haoyuan Mo,Ling Guo,Qiuyan Chen,Linquan Tang,Wenze Qiu,Yahui Yu,Hu Liang,Xinjun Huang,Guoying Liu,Wangzhong Li,Lin Wang,Rui Sun,Xiong Zou,Shanshan Guo,Peiyu Huang,Donghua Luo,Fang Qiu,Yishan Wu,Yijun Hua,Kuiyuan Liu,Shuhui Lv,Jingjing Miao,Yanqun Xiang,Ying Sun,Xiang Guo,Xing Lv
Cancer Communications.2018;38(1)59
[DOI]
51Deep learning in cancer pathology: a new generation of clinical biomarkers
Amelie Echle,Niklas Timon Rindtorff,Titus Josef Brinker,Tom Luedde,Alexander Thomas Pearson,Jakob Nikolas Kather
British Journal of Cancer.2021;124(4)686
[DOI]
52Automation and artificial intelligence in the clinical laboratory
Christopher Naugler,Deirdre L. Church
Critical Reviews in Clinical Laboratory Sciences.2019;56(2)98
[DOI]
53Automation and artificial intelligence in the clinical laboratory
Ruqayya Awan,Navid Alemi Koohbanani,Muhammad Shaban,Anna Lisowska,Nasir Rajpoot
Critical Reviews in Clinical Laboratory Sciences.2018;10882(2)788
[DOI]
54Dealing with Lack of Training Data for Convolutional Neural Networks: The Case of Digital Pathology
Francesco Ponzio,Gianvito Urgese,Elisa Ficarra,Santa Di Cataldo
Electronics.2019;8(3)256
[DOI]
55Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
James A. Diao,Jason K. Wang,Wan Fung Chui,Victoria Mountain,Sai Chowdary Gullapally,Ramprakash Srinivasan,Richard N. Mitchell,Benjamin Glass,Sara Hoffman,Sudha K. Rao,Chirag Maheshwari,Abhik Lahiri,Aaditya Prakash,Ryan McLoughlin,Jennifer K. Kerner,Murray B. Resnick,Michael C. Montalto,Aditya Khosla,Ilan N. Wapinski,Andrew H. Beck,Hunter L. Elliott,Amaro Taylor-Weiner
Nature Communications.2021;12(1)256
[DOI]
56A Deep Learning Convolutional Neural Network Can Recognize Common Patterns of Injury in Gastric Pathology
David R. Martin,Joshua A. Hanson,Rama R. Gullapalli,Fred A. Schultz,Aisha Sethi,Douglas P. Clark
Archives of Pathology & Laboratory Medicine.2020;144(3)370
[DOI]
57State of machine and deep learning in histopathological applications in digestive diseases
Soma Kobayashi,Joel H Saltz,Vincent W Yang
World Journal of Gastroenterology.2021;27(20)2545
[DOI]
58Machine learning-based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration
Shunsuke Koga,Xiaolai Zhou,Dennis W. Dickson
Neuropathology and Applied Neurobiology.2021;27(20)2545
[DOI]
59Machine learning-based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration
Jerry Wei,Arief Suriawinata,Bing Ren,Xiaoying Liu,Mikhail Lisovsky,Louis Vaickus,Charles Brown,Michael Baker,Naofumi Tomita,Lorenzo Torresani,Jason Wei,Saeed Hassanpour
Neuropathology and Applied Neurobiology.2021;12721(20)11
[DOI]
60A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy
Yoshiki Naito,Masayuki Tsuneki,Noriyoshi Fukushima,Yutaka Koga,Michiyo Higashi,Kenji Notohara,Shinichi Aishima,Nobuyuki Ohike,Takuma Tajiri,Hiroshi Yamaguchi,Yuki Fukumura,Motohiro Kojima,Kenichi Hirabayashi,Yoshihiro Hamada,Tomoko Norose,Keita Kai,Yuko Omori,Aoi Sukeda,Hirotsugu Noguchi,Kaori Uchino,Junya Itakura,Yoshinobu Okabe,Yuichi Yamada,Jun Akiba,Fahdi Kanavati,Yoshinao Oda,Toru Furukawa,Hirohisa Yano
Scientific Reports.2021;11(1)11
[DOI]
61Deep Learning Image Feature Recognition Algorithm for Judgment on the Rationality of Landscape Planning and Design
Bin Hu,Zhihan Lv
Complexity.2021;2021(1)1
[DOI]
62Classification of noiseless corneal image using capsule networks
H. James Deva Koresh,Shanty Chacko
Soft Computing.2020;24(21)16201
[DOI]
63GRAND(ER) ROUNDS: Expanding the universe of topics and speakers in a pathology department seminar series
Edward J. Gutmann
Annals of Diagnostic Pathology.2018;35(21)94
[DOI]
64Attention-Based Deep Neural Networks for Detection of Cancerous and Precancerous Esophagus Tissue on Histopathological Slides
Naofumi Tomita,Behnaz Abdollahi,Jason Wei,Bing Ren,Arief Suriawinata,Saeed Hassanpour
JAMA Network Open.2019;2(11)e1914645
[DOI]
65The Application of Artificial Intelligence in Prostate Cancer Management—What Improvements Can Be Expected? A Systematic Review
Ronan Thenault,Kevin Kaulanjan,Thomas Darde,Nathalie Rioux-Leclercq,Karim Bensalah,Marie Mermier,Zine-eddine Khene,Benoit Peyronnet,Shahrokh Shariat,Benjamin Pradère,Romain Mathieu
Applied Sciences.2020;10(18)6428
[DOI]
66Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
Jason W. Wei,Laura J. Tafe,Yevgeniy A. Linnik,Louis J. Vaickus,Naofumi Tomita,Saeed Hassanpour
Scientific Reports.2019;9(1)6428
[DOI]
67A Cloud-Based Platform for Big Data-Driven CPS Modeling of Robots
Naiheng Zhang
IEEE Access.2021;9(1)34667
[DOI]
68Weakly-supervised learning for lung carcinoma classification using deep learning
Fahdi Kanavati,Gouji Toyokawa,Seiya Momosaki,Michael Rambeau,Yuka Kozuma,Fumihiro Shoji,Koji Yamazaki,Sadanori Takeo,Osamu Iizuka,Masayuki Tsuneki
Scientific Reports.2020;10(1)34667
[DOI]
69Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects
Ke-Wei Wang,Ming Dong
World Journal of Gastroenterology.2020;26(34)5090
[DOI]
70Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides
Mengdan Zhu,Bing Ren,Ryland Richards,Matthew Suriawinata,Naofumi Tomita,Saeed Hassanpour
Scientific Reports.2021;11(1)5090
[DOI]
71Application of Deep Learning Algorithm in Feature Mining and Rapid Identification of Colorectal Image
Mingchao Du,Min Tao,Jian Hong,Dian Zhou,Shuihua Wang
IEEE Access.2020;8(1)128830
[DOI]
72Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
Nishant Thakur,Hongjun Yoon,Yosep Chong
Cancers.2020;12(7)1884
[DOI]
73A Novel Framework for Classifying Leather Surface Defects Based on a Parameter Optimized Residual Network
Jiehang Deng,Jiaxin Liu,Changzheng Wu,Tao Zhong,Guosheng Gu,Bingo Wing-Kuen Ling
IEEE Access.2020;8(7)192109
[DOI]
  Feedback 
  Subscribe 
  Advertise 
  Search 
  Advanced Search 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal
JPI Blogs